1 // Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
\r
3 // This file is part of SCSI2SD.
\r
5 // SCSI2SD is free software: you can redistribute it and/or modify
\r
6 // it under the terms of the GNU General Public License as published by
\r
7 // the Free Software Foundation, either version 3 of the License, or
\r
8 // (at your option) any later version.
\r
10 // SCSI2SD is distributed in the hope that it will be useful,
\r
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
\r
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
\r
13 // GNU General Public License for more details.
\r
15 // You should have received a copy of the GNU General Public License
\r
16 // along with SCSI2SD. If not, see <http://www.gnu.org/licenses/>.
\r
18 #include "stm32f2xx.h"
\r
19 #include "stm32f2xx_hal.h"
\r
20 #include "stm32f2xx_hal_dma.h"
\r
23 #include "scsiPhy.h"
\r
31 // 5MB/s sync and async.
\r
32 // Assumes a 96MHz fpga clock.
\r
33 // 2:0 Deskew count, 55ns
\r
34 // 6:4 Hold count, 53ns
\r
35 // 3:0 Assertion count, 80ns
\r
36 #define SCSI_DEFAULT_DESKEW 0x6
\r
37 #define SCSI_DEFAULT_TIMING ((0x5 << 4) | 0x8)
\r
40 // 2:0 Deskew count, 25ns
\r
41 // 6:4 Hold count, 33ns
\r
42 // 3:0 Assertion count, 30ns
\r
43 #define SCSI_FAST10_DESKEW 3
\r
44 #define SCSI_FAST10_TIMING ((0x3 << 4) | 0x3)
\r
47 // 2:0 Deskew count, 12ns
\r
48 // 6:4 Hold count, 17ns
\r
49 // 3:0 Assertion count, 15ns
\r
50 #define SCSI_FAST20_DESKEW 2
\r
51 #define SCSI_FAST20_TIMING ((0x2 << 4) | 0x2)
\r
53 // Private DMA variables.
\r
54 static int dmaInProgress = 0;
\r
56 static DMA_HandleTypeDef memToFSMC;
\r
57 static DMA_HandleTypeDef fsmcToMem;
\r
60 volatile uint8_t scsiRxDMAComplete;
\r
61 volatile uint8_t scsiTxDMAComplete;
\r
64 CY_ISR_PROTO(scsiRxCompleteISR);
\r
65 CY_ISR(scsiRxCompleteISR)
\r
67 traceIrq(trace_scsiRxCompleteISR);
\r
68 scsiRxDMAComplete = 1;
\r
71 CY_ISR_PROTO(scsiTxCompleteISR);
\r
72 CY_ISR(scsiTxCompleteISR)
\r
74 traceIrq(trace_scsiTxCompleteISR);
\r
75 scsiTxDMAComplete = 1;
\r
79 uint8_t scsiPhyFifoSel = 0; // global
\r
81 // scsi IRQ handler is initialised by the STM32 HAL. Connected to
\r
83 // Note: naming is important to ensure this function is listed in the
\r
85 void EXTI4_IRQHandler()
\r
87 traceIrq(trace_scsiResetISR);
\r
89 // Make sure that interrupt flag is set
\r
90 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_4) != RESET) {
\r
92 // Clear interrupt flag
\r
93 __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_4);
\r
95 scsiDev.resetFlag = scsiDev.resetFlag || scsiStatusRST();
\r
96 // TODO grab SEL status as well
\r
101 static void assertFail()
\r
113 scsiSetDataCount(uint32_t count)
\r
115 *SCSI_DATA_CNT_HI = count >> 8;
\r
116 *SCSI_DATA_CNT_LO = count & 0xff;
\r
117 *SCSI_DATA_CNT_SET = 1;
\r
124 if (!scsiPhyFifoAltEmpty()) {
\r
125 // Force a lock-up.
\r
129 scsiSetDataCount(1);
\r
131 trace(trace_spinPhyRxFifo);
\r
132 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
134 uint8_t val = scsiPhyRx();
\r
135 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
138 if (!scsiPhyFifoEmpty()) {
\r
140 uint8_t k __attribute((unused));
\r
141 while (!scsiPhyFifoEmpty()) { k = scsiPhyRx(); ++j; }
\r
143 // Force a lock-up.
\r
152 scsiReadPIO(uint8_t* data, uint32_t count)
\r
154 uint16_t* fifoData = (uint16_t*)data;
\r
155 for (int i = 0; i < (count + 1) / 2; ++i)
\r
157 fifoData[i] = scsiPhyRx(); // TODO ASSUMES LITTLE ENDIAN
\r
162 scsiReadDMA(uint8_t* data, uint32_t count)
\r
164 // Prepare DMA transfer
\r
166 trace(trace_doRxSingleDMA);
\r
168 scsiTxDMAComplete = 1; // TODO not used much
\r
169 scsiRxDMAComplete = 0; // TODO not used much
\r
173 (uint32_t) SCSI_FIFO_DATA,
\r
181 int complete = __HAL_DMA_GET_COUNTER(&fsmcToMem) == 0;
\r
182 complete = complete && (HAL_DMA_PollForTransfer(&fsmcToMem, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
185 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
186 scsiRxDMAComplete = 1;
\r
190 // TODO MM scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
202 scsiRead(uint8_t* data, uint32_t count, int* parityError)
\r
208 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
209 ? SCSI_FIFO_DEPTH : (count - i);
\r
210 #ifdef SCSI_FSMC_DMA
\r
213 // DMA is doing 32bit transfers.
\r
214 chunk = chunk & 0xFFFFFFF8;
\r
217 scsiSetDataCount(chunk);
\r
219 while (i < count && likely(!scsiDev.resetFlag))
\r
221 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
222 *parityError |= scsiParityError();
\r
225 uint32_t nextChunk = ((count - i - chunk) > SCSI_FIFO_DEPTH)
\r
226 ? SCSI_FIFO_DEPTH : (count - i - chunk);
\r
227 #ifdef SCSI_FSMC_DMA
\r
228 if (nextChunk >= 16)
\r
230 nextChunk = nextChunk & 0xFFFFFFF8;
\r
235 scsiSetDataCount(nextChunk);
\r
238 #ifdef SCSI_FSMC_DMA
\r
242 scsiReadPIO(data + i, chunk);
\r
244 #ifdef SCSI_FSMC_DMA
\r
247 scsiReadDMA(data + i, chunk);
\r
249 trace(trace_spinReadDMAPoll);
\r
251 while (!scsiReadDMAPoll() && likely(!scsiDev.resetFlag))
\r
262 if (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty()) {
\r
264 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++j; }
\r
267 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++k; }
\r
268 // Force a lock-up.
\r
275 scsiWriteByte(uint8_t value)
\r
278 if (!scsiPhyFifoEmpty()) {
\r
279 // Force a lock-up.
\r
283 trace(trace_spinPhyTxFifo);
\r
287 scsiSetDataCount(1);
\r
289 trace(trace_spinTxComplete);
\r
290 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
293 if (!scsiPhyFifoAltEmpty()) {
\r
294 // Force a lock-up.
\r
301 scsiWritePIO(const uint8_t* data, uint32_t count)
\r
303 uint16_t* fifoData = (uint16_t*)data;
\r
304 for (int i = 0; i < (count + 1) / 2; ++i)
\r
306 scsiPhyTx(fifoData[i]);
\r
311 scsiWriteDMA(const uint8_t* data, uint32_t count)
\r
313 // Prepare DMA transfer
\r
315 trace(trace_doTxSingleDMA);
\r
317 scsiTxDMAComplete = 0;
\r
318 scsiRxDMAComplete = 1;
\r
323 (uint32_t) SCSI_FIFO_DATA,
\r
330 int complete = __HAL_DMA_GET_COUNTER(&memToFSMC) == 0;
\r
331 complete = complete && (HAL_DMA_PollForTransfer(&memToFSMC, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
334 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
335 scsiRxDMAComplete = 1;
\r
347 scsiWrite(const uint8_t* data, uint32_t count)
\r
350 while (i < count && likely(!scsiDev.resetFlag))
\r
352 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
353 ? SCSI_FIFO_DEPTH : (count - i);
\r
356 if (!scsiPhyFifoEmpty()) {
\r
357 // Force a lock-up.
\r
362 #ifdef SCSI_FSMC_DMA
\r
366 scsiWritePIO(data + i, chunk);
\r
368 #ifdef SCSI_FSMC_DMA
\r
371 // DMA is doing 32bit transfers.
\r
372 chunk = chunk & 0xFFFFFFF8;
\r
373 scsiWriteDMA(data + i, chunk);
\r
375 trace(trace_spinReadDMAPoll);
\r
377 while (!scsiWriteDMAPoll() && likely(!scsiDev.resetFlag))
\r
383 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
388 if (!scsiPhyFifoAltEmpty()) {
\r
389 // Force a lock-up.
\r
395 scsiSetDataCount(chunk);
\r
398 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
403 if (!scsiPhyFifoAltEmpty()) {
\r
404 // Force a lock-up.
\r
410 static inline void busSettleDelay(void)
\r
412 // Data Release time (switching IO) = 400ns
\r
413 // + Bus Settle time (switching phase) = 400ns.
\r
414 s2s_delay_us(1); // Close enough.
\r
417 void scsiEnterBusFree()
\r
419 *SCSI_CTRL_BSY = 0x00;
\r
420 // We now have a Bus Clear Delay of 800ns to release remaining signals.
\r
421 *SCSI_CTRL_PHASE = 0;
\r
424 void scsiEnterPhase(int phase)
\r
426 // ANSI INCITS 362-2002 SPI-3 10.7.1:
\r
427 // Phase changes are not allowed while REQ or ACK is asserted.
\r
428 while (likely(!scsiDev.resetFlag) && scsiStatusACK()) {}
\r
430 int newPhase = phase > 0 ? phase : 0;
\r
431 int oldPhase = *SCSI_CTRL_PHASE;
\r
433 if (!scsiDev.resetFlag && (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty())) {
\r
434 // Force a lock-up.
\r
437 if (newPhase != oldPhase)
\r
439 if ((newPhase == DATA_IN || newPhase == DATA_OUT) &&
\r
440 scsiDev.target->syncOffset)
\r
442 if (scsiDev.target->syncPeriod == 12)
\r
444 // SCSI2 FAST-20 Timing. 20MB/s.
\r
445 *SCSI_CTRL_DESKEW = SCSI_FAST20_DESKEW;
\r
446 *SCSI_CTRL_TIMING = SCSI_FAST20_TIMING;
\r
448 else if (scsiDev.target->syncPeriod == 25)
\r
450 // SCSI2 FAST Timing. 10MB/s.
\r
451 *SCSI_CTRL_DESKEW = SCSI_FAST10_DESKEW;
\r
452 *SCSI_CTRL_TIMING = SCSI_FAST10_TIMING;
\r
455 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
456 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
459 *SCSI_CTRL_SYNC_OFFSET = scsiDev.target->syncOffset;
\r
461 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
464 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
465 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
468 *SCSI_CTRL_PHASE = newPhase;
\r
471 if (scsiDev.compatMode < COMPAT_SCSI2)
\r
479 void scsiPhyReset()
\r
481 trace(trace_scsiPhyReset);
\r
484 trace(trace_spinDMAReset);
\r
485 HAL_DMA_Abort(&memToFSMC);
\r
486 HAL_DMA_Abort(&fsmcToMem);
\r
491 *SCSI_CTRL_PHASE = 0x00;
\r
492 *SCSI_CTRL_BSY = 0x00;
\r
493 s2s_fpgaReset(); // Clears fifos etc.
\r
495 scsiPhyFifoSel = 0;
\r
496 *SCSI_FIFO_SEL = 0;
\r
497 *SCSI_CTRL_DBX = 0;
\r
499 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
500 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
501 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
503 // DMA Benchmark code
\r
504 // Currently 11MB/s.
\r
505 #ifdef DMA_BENCHMARK
\r
510 for (int i = 0; i < (100LL * 1024 * 1024 / SCSI_FIFO_DEPTH); ++i)
\r
514 (uint32_t) &scsiDev.data[0],
\r
515 (uint32_t) SCSI_FIFO_DATA,
\r
516 SCSI_FIFO_DEPTH / 4);
\r
518 HAL_DMA_PollForTransfer(
\r
520 HAL_DMA_FULL_TRANSFER,
\r
527 for(int i = 0; i < 10; ++i) s2s_delay_ms(1000);
\r
531 // FPGA comms test code
\r
535 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
537 scsiDev.data[j] = j;
\r
540 if (!scsiPhyFifoEmpty())
\r
545 *SCSI_CTRL_PHASE = DATA_IN;
\r
548 (uint32_t) &scsiDev.data[0],
\r
549 (uint32_t) SCSI_FIFO_DATA,
\r
550 SCSI_FIFO_DEPTH / 4);
\r
552 HAL_DMA_PollForTransfer(
\r
554 HAL_DMA_FULL_TRANSFER,
\r
557 if (!scsiPhyFifoFull())
\r
562 memset(&scsiDev.data[0], 0, SCSI_FIFO_DEPTH);
\r
564 *SCSI_CTRL_PHASE = DATA_OUT;
\r
567 (uint32_t) SCSI_FIFO_DATA,
\r
568 (uint32_t) &scsiDev.data[0],
\r
569 SCSI_FIFO_DEPTH / 2);
\r
571 HAL_DMA_PollForTransfer(
\r
573 HAL_DMA_FULL_TRANSFER,
\r
576 if (!scsiPhyFifoEmpty())
\r
582 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
584 if (scsiDev.data[j] != (uint8_t) j)
\r
595 #ifdef SCSI_FREQ_TEST
\r
598 *SCSI_CTRL_DBX = 0xAA;
\r
599 *SCSI_CTRL_DBX = 0x55;
\r
605 static void scsiPhyInitDMA()
\r
607 // One-time init only.
\r
608 static uint8_t init = 0;
\r
613 // Memory to memory transfers can only be done using DMA2
\r
614 __DMA2_CLK_ENABLE();
\r
616 // Transmit SCSI data. The source data is treated as the
\r
617 // peripheral (even though this is memory-to-memory)
\r
618 memToFSMC.Instance = DMA2_Stream0;
\r
619 memToFSMC.Init.Channel = DMA_CHANNEL_0;
\r
620 memToFSMC.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
621 memToFSMC.Init.PeriphInc = DMA_PINC_ENABLE;
\r
622 memToFSMC.Init.MemInc = DMA_MINC_DISABLE;
\r
623 memToFSMC.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
\r
624 memToFSMC.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
\r
625 memToFSMC.Init.Mode = DMA_NORMAL;
\r
626 memToFSMC.Init.Priority = DMA_PRIORITY_LOW;
\r
627 // FIFO mode is needed to allow conversion from 32bit words to the
\r
628 // 16bit FSMC interface.
\r
629 memToFSMC.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
631 // We only use 1 word (4 bytes) in the fifo at a time. Normally it's
\r
632 // better to let the DMA fifo fill up then do burst transfers, but
\r
633 // bursting out the FSMC interface will be very slow and may starve
\r
634 // other (faster) transfers. We don't want to risk the SDIO transfers
\r
635 // from overrun/underrun conditions.
\r
636 memToFSMC.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
637 memToFSMC.Init.MemBurst = DMA_MBURST_SINGLE;
\r
638 memToFSMC.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
639 HAL_DMA_Init(&memToFSMC);
\r
641 // Receive SCSI data. The source data (fsmc) is treated as the
\r
642 // peripheral (even though this is memory-to-memory)
\r
643 fsmcToMem.Instance = DMA2_Stream1;
\r
644 fsmcToMem.Init.Channel = DMA_CHANNEL_0;
\r
645 fsmcToMem.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
646 fsmcToMem.Init.PeriphInc = DMA_PINC_DISABLE;
\r
647 fsmcToMem.Init.MemInc = DMA_MINC_ENABLE;
\r
648 fsmcToMem.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
\r
649 fsmcToMem.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
\r
650 fsmcToMem.Init.Mode = DMA_NORMAL;
\r
651 fsmcToMem.Init.Priority = DMA_PRIORITY_LOW;
\r
652 fsmcToMem.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
653 fsmcToMem.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
654 fsmcToMem.Init.MemBurst = DMA_MBURST_SINGLE;
\r
655 fsmcToMem.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
656 HAL_DMA_Init(&fsmcToMem);
\r
658 // TODO configure IRQs
\r
667 *SCSI_CTRL_IDMASK = 0x00; // Reset in scsiPhyConfig
\r
668 *SCSI_CTRL_PHASE = 0x00;
\r
669 *SCSI_CTRL_BSY = 0x00;
\r
670 scsiPhyFifoSel = 0;
\r
671 *SCSI_FIFO_SEL = 0;
\r
672 *SCSI_CTRL_DBX = 0;
\r
674 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
675 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
676 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
680 void scsiPhyConfig()
\r
682 if (scsiDev.boardCfg.flags6 & S2S_CFG_ENABLE_TERMINATOR)
\r
684 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_RESET);
\r
688 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_SET);
\r
692 uint8_t idMask = 0;
\r
693 for (int i = 0; i < 8; ++i)
\r
695 const S2S_TargetCfg* cfg = s2s_getConfigById(i);
\r
696 if (cfg && (cfg->scsiId & S2S_CFG_TARGET_ENABLED))
\r
698 idMask |= (1 << i);
\r
701 *SCSI_CTRL_IDMASK = idMask;
\r
704 ((scsiDev.boardCfg.flags & S2S_CFG_DISABLE_GLITCH) ?
\r
705 SCSI_CTRL_FLAGS_DISABLE_GLITCH : 0) |
\r
706 ((scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY) ?
\r
707 SCSI_CTRL_FLAGS_ENABLE_PARITY : 0);
\r
713 // 2 = Parity error
\r
717 // 32 = other error
\r
720 if (scsiDev.phase != BUS_FREE)
\r
725 // Acquire the SCSI bus.
\r
726 for (int i = 0; i < 100; ++i)
\r
728 if (scsiStatusBSY())
\r
733 if (scsiStatusBSY())
\r
735 // Error, couldn't acquire scsi bus
\r
738 *SCSI_CTRL_BSY = 1;
\r
739 if (! scsiStatusBSY())
\r
741 // Error, BSY doesn't work.
\r
745 // Should be safe to use the bus now.
\r
752 for (i = 0; i < 256; ++i)
\r
754 *SCSI_CTRL_DBX = i;
\r
756 if (*SCSI_STS_DBX != (i & 0xff))
\r
760 /*if (Lookup_OddParity[i & 0xff] != SCSI_ReadPin(SCSI_In_DBP))
\r
765 *SCSI_CTRL_DBX = 0;
\r
767 // TEST MSG, CD, IO
\r
769 for (i = 0; i < 8; ++i)
\r
771 SCSI_CTL_PHASE_Write(i);
\r
774 if (SCSI_ReadPin(SCSI_In_MSG) != !!(i & __scsiphase_msg))
\r
778 if (SCSI_ReadPin(SCSI_In_CD) != !!(i & __scsiphase_cd))
\r
782 if (SCSI_ReadPin(SCSI_In_IO) != !!(i & __scsiphase_io))
\r
787 SCSI_CTL_PHASE_Write(0);
\r
789 uint32_t signalsOut[] = { SCSI_Out_ATN, SCSI_Out_BSY, SCSI_Out_RST, SCSI_Out_SEL };
\r
790 uint32_t signalsIn[] = { SCSI_Filt_ATN, SCSI_Filt_BSY, SCSI_Filt_RST, SCSI_Filt_SEL };
\r
792 for (i = 0; i < 4; ++i)
\r
794 SCSI_SetPin(signalsOut[i]);
\r
798 for (j = 0; j < 4; ++j)
\r
802 if (! SCSI_ReadFilt(signalsIn[j]))
\r
809 if (SCSI_ReadFilt(signalsIn[j]))
\r
815 SCSI_ClearPin(signalsOut[i]);
\r
819 *SCSI_CTRL_BSY = 0;
\r