1 // Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
\r
3 // This file is part of SCSI2SD.
\r
5 // SCSI2SD is free software: you can redistribute it and/or modify
\r
6 // it under the terms of the GNU General Public License as published by
\r
7 // the Free Software Foundation, either version 3 of the License, or
\r
8 // (at your option) any later version.
\r
10 // SCSI2SD is distributed in the hope that it will be useful,
\r
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
\r
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
\r
13 // GNU General Public License for more details.
\r
15 // You should have received a copy of the GNU General Public License
\r
16 // along with SCSI2SD. If not, see <http://www.gnu.org/licenses/>.
\r
18 #include "stm32f2xx.h"
\r
19 #include "stm32f2xx_hal.h"
\r
20 #include "stm32f2xx_hal_dma.h"
\r
23 #include "scsiPhy.h"
\r
30 static uint8_t asyncTimings[][4] =
\r
32 /* Speed, Assert, Deskew, Hold, Glitch */
\r
33 {/*1.5MB/s*/ 28, 18, 13, 15},
\r
34 {/*3.3MB/s*/ 13, 6, 6, 13},
\r
35 {/*5MB/s*/ 9, 6, 6, 6}, // 80ns
\r
36 {/*safe*/ 3, 6, 6, 6}, // Probably safe
\r
37 {/*turbo*/ 3, 3, 3, 2}
\r
40 #define SCSI_ASYNC_15 0
\r
41 #define SCSI_ASYNC_33 1
\r
42 #define SCSI_ASYNC_50 2
\r
43 #define SCSI_ASYNC_SAFE 3
\r
44 #define SCSI_ASYNC_TURBO 4
\r
46 // 5MB/s synchronous timing
\r
47 #define SCSI_FAST5_DESKEW 6 // 55ns
\r
48 #define SCSI_FAST5_HOLD 6 // 53ns
\r
50 // 10MB/s synchronous timing
\r
51 // 2:0 Deskew count, 25ns
\r
52 // 6:4 Hold count, 33ns
\r
53 // 3:0 Assertion count, 30ns
\r
54 // We want deskew + hold + assert + 3 to add up to 11 clocks
\r
55 // the fpga code has 1 clock of overhead when transitioning from deskew to
\r
58 #define SCSI_FAST10_DESKEW 2 // 25ns
\r
59 #define SCSI_FAST10_HOLD 3 // 33ns
\r
60 #define SCSI_FAST10_WRITE_ASSERT 3 // 30ns. Overall clocks only works if fpga overhead is 3.
\r
62 // Slow down the cycle to be valid. 2x assert period is TOO FAST when
\r
63 // reading data. It's ok when writing due to the deskew.
\r
64 // 50ns. ie. 100ns / 2. Rounded down because there's likely a few extra cycles
\r
66 #define SCSI_FAST10_READ_ASSERT 5
\r
68 // Fastest possible timing, probably not 20MB/s
\r
69 #define SCSI_FAST20_DESKEW 1
\r
70 #define SCSI_FAST20_HOLD 2
\r
71 #define SCSI_FAST20_ASSERT 2
\r
74 #define syncDeskew(period) ((period) < 35 ? \
\r
75 SCSI_FAST10_DESKEW : SCSI_FAST5_DESKEW)
\r
77 #define syncHold(period) ((period) < 35 ? \
\r
78 ((period) == 25 ? SCSI_FAST10_HOLD : 4) /* 25ns/33ns */\
\r
82 // Number of overhead cycles per period.
\r
83 #define FPGA_OVERHEAD 2
\r
84 #define FPGA_CYCLES_PER_NS 9
\r
85 #define SCSI_PERIOD_CLKS(period) ((((int)period * 4) + (FPGA_CYCLES_PER_NS/2)) / FPGA_CYCLES_PER_NS)
\r
87 // 3.125MB/s (80 period) to < 10MB/s sync
\r
88 // Assumes a 108MHz fpga clock. (9 ns)
\r
89 // 3:0 Assertion count, variable
\r
90 #define syncAssertionWrite(period,deskew) ((SCSI_PERIOD_CLKS(period) - deskew - FPGA_OVERHEAD + 1) / 2)
\r
91 #define syncAssertionRead(period) syncAssertionWrite(period,0)
\r
94 // Time until we consider ourselves selected
\r
96 #define SCSI_DEFAULT_SELECTION 43
\r
97 #define SCSI_FAST_SELECTION 5
\r
99 // Private DMA variables.
\r
100 static int dmaInProgress = 0;
\r
102 static DMA_HandleTypeDef memToFSMC;
\r
103 static DMA_HandleTypeDef fsmcToMem;
\r
106 volatile uint8_t scsiRxDMAComplete;
\r
107 volatile uint8_t scsiTxDMAComplete;
\r
109 uint8_t scsiPhyFifoSel = 0; // global
\r
111 // scsi IRQ handler is initialised by the STM32 HAL. Connected to
\r
113 // Note: naming is important to ensure this function is listed in the
\r
115 void EXTI4_IRQHandler()
\r
117 // Make sure that interrupt flag is set
\r
118 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_4) != RESET) {
\r
120 // Clear interrupt flag
\r
121 __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_4);
\r
123 scsiDev.resetFlag = scsiDev.resetFlag || scsiStatusRST();
\r
125 // selFlag is required for Philips P2000C which releases it after 600ns
\r
126 // without waiting for BSY.
\r
127 // Also required for some early Mac Plus roms
\r
128 scsiDev.selFlag = *SCSI_STS_SELECTED;
\r
131 __SEV(); // Set event. See corresponding __WFE() calls.
\r
134 static void assertFail()
\r
146 scsiSetDataCount(uint32_t count)
\r
148 *SCSI_DATA_CNT_HI = count >> 8;
\r
149 *SCSI_DATA_CNT_LO = count & 0xff;
\r
150 *SCSI_DATA_CNT_SET = 1;
\r
157 if (!scsiPhyFifoAltEmpty()) {
\r
158 // Force a lock-up.
\r
162 scsiSetDataCount(1);
\r
164 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
166 __WFE(); // Wait for event
\r
169 uint8_t val = scsiPhyRx();
\r
170 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
173 if (!scsiPhyFifoEmpty()) {
\r
175 uint8_t k __attribute((unused));
\r
176 while (!scsiPhyFifoEmpty()) { k = scsiPhyRx(); ++j; }
\r
178 // Force a lock-up.
\r
187 scsiReadPIO(uint8_t* data, uint32_t count)
\r
189 uint16_t* fifoData = (uint16_t*)data;
\r
191 for (int i = 0; i < (count + 1) / 2; ++i)
\r
193 fifoData[i] = scsiPhyRx(); // TODO ASSUMES LITTLE ENDIAN
\r
198 scsiReadDMA(uint8_t* data, uint32_t count)
\r
200 // Prepare DMA transfer
\r
203 scsiTxDMAComplete = 1; // TODO not used much
\r
204 scsiRxDMAComplete = 0; // TODO not used much
\r
208 (uint32_t) SCSI_FIFO_DATA,
\r
216 int complete = __HAL_DMA_GET_COUNTER(&fsmcToMem) == 0;
\r
217 complete = complete && (HAL_DMA_PollForTransfer(&fsmcToMem, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
220 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
221 scsiRxDMAComplete = 1;
\r
225 // TODO MM scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
237 scsiRead(uint8_t* data, uint32_t count, int* parityError)
\r
243 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
244 ? SCSI_FIFO_DEPTH : (count - i);
\r
245 #ifdef SCSI_FSMC_DMA
\r
248 // DMA is doing 32bit transfers.
\r
249 chunk = chunk & 0xFFFFFFF8;
\r
252 scsiSetDataCount(chunk);
\r
254 while (i < count && likely(!scsiDev.resetFlag))
\r
256 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
258 __WFE(); // Wait for event
\r
260 *parityError |= scsiParityError();
\r
263 uint32_t nextChunk = ((count - i - chunk) > SCSI_FIFO_DEPTH)
\r
264 ? SCSI_FIFO_DEPTH : (count - i - chunk);
\r
265 #ifdef SCSI_FSMC_DMA
\r
266 if (nextChunk >= 16)
\r
268 nextChunk = nextChunk & 0xFFFFFFF8;
\r
273 scsiSetDataCount(nextChunk);
\r
276 #ifdef SCSI_FSMC_DMA
\r
280 scsiReadPIO(data + i, chunk);
\r
282 #ifdef SCSI_FSMC_DMA
\r
285 scsiReadDMA(data + i, chunk);
\r
287 while (!scsiReadDMAPoll() && likely(!scsiDev.resetFlag))
\r
298 if (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty()) {
\r
300 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++j; }
\r
303 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++k; }
\r
304 // Force a lock-up.
\r
311 scsiWriteByte(uint8_t value)
\r
314 if (!scsiPhyFifoEmpty()) {
\r
315 // Force a lock-up.
\r
322 scsiSetDataCount(1);
\r
324 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
326 __WFE(); // Wait for event
\r
330 if (!scsiPhyFifoAltEmpty()) {
\r
331 // Force a lock-up.
\r
338 scsiWritePIO(const uint8_t* data, uint32_t count)
\r
340 uint16_t* fifoData = (uint16_t*)data;
\r
341 for (int i = 0; i < (count + 1) / 2; ++i)
\r
343 scsiPhyTx(fifoData[i]);
\r
348 scsiWriteDMA(const uint8_t* data, uint32_t count)
\r
350 // Prepare DMA transfer
\r
353 scsiTxDMAComplete = 0;
\r
354 scsiRxDMAComplete = 1;
\r
359 (uint32_t) SCSI_FIFO_DATA,
\r
366 int complete = __HAL_DMA_GET_COUNTER(&memToFSMC) == 0;
\r
367 complete = complete && (HAL_DMA_PollForTransfer(&memToFSMC, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
370 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
371 scsiRxDMAComplete = 1;
\r
383 scsiWrite(const uint8_t* data, uint32_t count)
\r
386 while (i < count && likely(!scsiDev.resetFlag))
\r
388 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
389 ? SCSI_FIFO_DEPTH : (count - i);
\r
392 if (!scsiPhyFifoEmpty()) {
\r
393 // Force a lock-up.
\r
398 #ifdef SCSI_FSMC_DMA
\r
402 scsiWritePIO(data + i, chunk);
\r
404 #ifdef SCSI_FSMC_DMA
\r
407 // DMA is doing 32bit transfers.
\r
408 chunk = chunk & 0xFFFFFFF8;
\r
409 scsiWriteDMA(data + i, chunk);
\r
411 while (!scsiWriteDMAPoll() && likely(!scsiDev.resetFlag))
\r
417 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
419 __WFE(); // Wait for event
\r
423 if (!scsiPhyFifoAltEmpty()) {
\r
424 // Force a lock-up.
\r
430 scsiSetDataCount(chunk);
\r
433 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
435 __WFE(); // Wait for event
\r
439 if (!scsiPhyFifoAltEmpty()) {
\r
440 // Force a lock-up.
\r
446 static inline void busSettleDelay(void)
\r
448 // Data Release time (switching IO) = 400ns
\r
449 // + Bus Settle time (switching phase) = 400ns.
\r
450 s2s_delay_us(1); // Close enough.
\r
453 void scsiEnterBusFree()
\r
455 *SCSI_CTRL_BSY = 0x00;
\r
456 // We now have a Bus Clear Delay of 800ns to release remaining signals.
\r
457 *SCSI_CTRL_PHASE = 0;
\r
462 uint8_t assertClocks,
\r
467 *SCSI_CTRL_DESKEW = ((hold & 7) << 5) | (deskew & 0x1F);
\r
468 *SCSI_CTRL_TIMING = (assertClocks & 0x3F);
\r
469 *SCSI_CTRL_TIMING3 = (glitch & 0xF);
\r
473 scsiSetDefaultTiming()
\r
475 const uint8_t* asyncTiming = asyncTimings[0];
\r
483 void scsiEnterPhase(int newPhase)
\r
485 // ANSI INCITS 362-2002 SPI-3 10.7.1:
\r
486 // Phase changes are not allowed while REQ or ACK is asserted.
\r
487 while (likely(!scsiDev.resetFlag) && scsiStatusACK()) {}
\r
489 int oldPhase = *SCSI_CTRL_PHASE;
\r
491 if (!scsiDev.resetFlag && (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty())) {
\r
492 // Force a lock-up.
\r
495 if (newPhase != oldPhase)
\r
497 if ((newPhase == DATA_IN || newPhase == DATA_OUT) &&
\r
498 scsiDev.target->syncOffset)
\r
500 if (scsiDev.target->syncPeriod < 23)
\r
502 scsiSetTiming(SCSI_FAST20_ASSERT, SCSI_FAST20_DESKEW, SCSI_FAST20_HOLD, 1);
\r
504 else if (scsiDev.target->syncPeriod <= 25)
\r
506 if (newPhase == DATA_IN)
\r
508 scsiSetTiming(SCSI_FAST10_WRITE_ASSERT, SCSI_FAST10_DESKEW, SCSI_FAST10_HOLD, 1);
\r
512 scsiSetTiming(SCSI_FAST10_READ_ASSERT, SCSI_FAST10_DESKEW, SCSI_FAST10_HOLD, 1);
\r
517 // Amiga A3000 OS3.9 sets period to 35 and fails with
\r
520 scsiDev.target->syncPeriod < 35 ? 1 :
\r
521 (scsiDev.target->syncPeriod < 45 ? 2 : 5);
\r
522 int deskew = syncDeskew(scsiDev.target->syncPeriod);
\r
524 if (newPhase == DATA_IN)
\r
526 assertion = syncAssertionWrite(scsiDev.target->syncPeriod, deskew);
\r
530 assertion = syncAssertionRead(scsiDev.target->syncPeriod);
\r
535 syncHold(scsiDev.target->syncPeriod),
\r
539 *SCSI_CTRL_SYNC_OFFSET = scsiDev.target->syncOffset;
\r
541 else if (newPhase >= 0)
\r
544 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
545 const uint8_t* asyncTiming;
\r
547 if (scsiDev.boardCfg.scsiSpeed == S2S_CFG_SPEED_NoLimit)
\r
549 asyncTiming = asyncTimings[SCSI_ASYNC_SAFE];
\r
551 else if (scsiDev.boardCfg.scsiSpeed >= S2S_CFG_SPEED_TURBO)
\r
553 asyncTiming = asyncTimings[SCSI_ASYNC_TURBO];
\r
555 else if (scsiDev.boardCfg.scsiSpeed >= S2S_CFG_SPEED_ASYNC_50)
\r
557 asyncTiming = asyncTimings[SCSI_ASYNC_50];
\r
558 } else if (scsiDev.boardCfg.scsiSpeed >= S2S_CFG_SPEED_ASYNC_33) {
\r
560 asyncTiming = asyncTimings[SCSI_ASYNC_33];
\r
563 asyncTiming = asyncTimings[SCSI_ASYNC_15];
\r
574 *SCSI_CTRL_PHASE = newPhase;
\r
577 if (scsiDev.compatMode < COMPAT_SCSI2)
\r
584 *SCSI_CTRL_PHASE = 0;
\r
589 uint32_t s2s_getScsiRateMBs()
\r
591 if (scsiDev.target->syncOffset)
\r
593 if (scsiDev.target->syncPeriod < 23)
\r
597 else if (scsiDev.target->syncPeriod <= 25)
\r
603 return 1000 / (scsiDev.target->syncPeriod * 4);
\r
612 void scsiPhyReset()
\r
616 HAL_DMA_Abort(&memToFSMC);
\r
617 HAL_DMA_Abort(&fsmcToMem);
\r
622 s2s_fpgaReset(); // Clears fifos etc.
\r
624 *SCSI_CTRL_PHASE = 0x00;
\r
625 *SCSI_CTRL_BSY = 0x00;
\r
626 scsiPhyFifoSel = 0;
\r
627 *SCSI_FIFO_SEL = 0;
\r
628 *SCSI_CTRL_DBX = 0;
\r
630 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
631 scsiSetDefaultTiming();
\r
633 // DMA Benchmark code
\r
634 // Currently 14.9MB/s.
\r
635 #ifdef DMA_BENCHMARK
\r
640 for (int i = 0; i < (100LL * 1024 * 1024 / SCSI_FIFO_DEPTH); ++i)
\r
644 (uint32_t) &scsiDev.data[0],
\r
645 (uint32_t) SCSI_FIFO_DATA,
\r
646 SCSI_FIFO_DEPTH / 4);
\r
648 HAL_DMA_PollForTransfer(
\r
650 HAL_DMA_FULL_TRANSFER,
\r
657 for(int i = 0; i < 10; ++i) s2s_delay_ms(1000);
\r
661 #ifdef SCSI_FREQ_TEST
\r
664 *SCSI_CTRL_DBX = 0xAA;
\r
665 *SCSI_CTRL_DBX = 0x55;
\r
671 static void scsiPhyInitDMA()
\r
673 // One-time init only.
\r
674 static uint8_t init = 0;
\r
679 // Memory to memory transfers can only be done using DMA2
\r
680 __DMA2_CLK_ENABLE();
\r
682 // Transmit SCSI data. The source data is treated as the
\r
683 // peripheral (even though this is memory-to-memory)
\r
684 memToFSMC.Instance = DMA2_Stream0;
\r
685 memToFSMC.Init.Channel = DMA_CHANNEL_0;
\r
686 memToFSMC.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
687 memToFSMC.Init.PeriphInc = DMA_PINC_ENABLE;
\r
688 memToFSMC.Init.MemInc = DMA_MINC_DISABLE;
\r
689 memToFSMC.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
\r
690 memToFSMC.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
\r
691 memToFSMC.Init.Mode = DMA_NORMAL;
\r
692 memToFSMC.Init.Priority = DMA_PRIORITY_LOW;
\r
693 // FIFO mode is needed to allow conversion from 32bit words to the
\r
694 // 16bit FSMC interface.
\r
695 memToFSMC.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
697 // We only use 1 word (4 bytes) in the fifo at a time. Normally it's
\r
698 // better to let the DMA fifo fill up then do burst transfers, but
\r
699 // bursting out the FSMC interface will be very slow and may starve
\r
700 // other (faster) transfers. We don't want to risk the SDIO transfers
\r
701 // from overrun/underrun conditions.
\r
702 memToFSMC.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
703 memToFSMC.Init.MemBurst = DMA_MBURST_SINGLE;
\r
704 memToFSMC.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
705 HAL_DMA_Init(&memToFSMC);
\r
707 // Receive SCSI data. The source data (fsmc) is treated as the
\r
708 // peripheral (even though this is memory-to-memory)
\r
709 fsmcToMem.Instance = DMA2_Stream1;
\r
710 fsmcToMem.Init.Channel = DMA_CHANNEL_0;
\r
711 fsmcToMem.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
712 fsmcToMem.Init.PeriphInc = DMA_PINC_DISABLE;
\r
713 fsmcToMem.Init.MemInc = DMA_MINC_ENABLE;
\r
714 fsmcToMem.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
\r
715 fsmcToMem.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
\r
716 fsmcToMem.Init.Mode = DMA_NORMAL;
\r
717 fsmcToMem.Init.Priority = DMA_PRIORITY_LOW;
\r
718 fsmcToMem.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
719 fsmcToMem.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
720 fsmcToMem.Init.MemBurst = DMA_MBURST_SINGLE;
\r
721 fsmcToMem.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
722 HAL_DMA_Init(&fsmcToMem);
\r
724 // TODO configure IRQs
\r
733 *SCSI_CTRL_IDMASK = 0x00; // Reset in scsiPhyConfig
\r
734 *SCSI_CTRL_PHASE = 0x00;
\r
735 *SCSI_CTRL_BSY = 0x00;
\r
736 scsiPhyFifoSel = 0;
\r
737 *SCSI_FIFO_SEL = 0;
\r
738 *SCSI_CTRL_DBX = 0;
\r
740 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
741 scsiSetDefaultTiming();
\r
743 *SCSI_CTRL_SEL_TIMING = SCSI_DEFAULT_SELECTION;
\r
747 void scsiPhyConfig()
\r
749 if (scsiDev.boardCfg.flags6 & S2S_CFG_ENABLE_TERMINATOR)
\r
751 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_RESET);
\r
755 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_SET);
\r
759 uint8_t idMask = 0;
\r
760 for (int i = 0; i < 8; ++i)
\r
762 const S2S_TargetCfg* cfg = s2s_getConfigById(i);
\r
763 if (cfg && (cfg->scsiId & S2S_CFG_TARGET_ENABLED))
\r
765 idMask |= (1 << i);
\r
768 *SCSI_CTRL_IDMASK = idMask;
\r
771 ((scsiDev.boardCfg.flags & S2S_CFG_DISABLE_GLITCH) ?
\r
772 SCSI_CTRL_FLAGS_DISABLE_GLITCH : 0) |
\r
773 ((scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY) ?
\r
774 SCSI_CTRL_FLAGS_ENABLE_PARITY : 0);
\r
776 *SCSI_CTRL_SEL_TIMING =
\r
777 (scsiDev.boardCfg.flags & S2S_CFG_ENABLE_SEL_LATCH) ?
\r
778 SCSI_FAST_SELECTION : SCSI_DEFAULT_SELECTION;
\r
783 // 2 = Parity error
\r
787 // 32 = other error
\r
788 // 64 = fpga comms error
\r
791 if (scsiDev.phase != BUS_FREE)
\r
796 // Acquire the SCSI bus.
\r
797 for (int i = 0; i < 100; ++i)
\r
799 if (scsiStatusBSY())
\r
804 if (scsiStatusBSY())
\r
806 // Error, couldn't acquire scsi bus
\r
809 *SCSI_CTRL_BSY = 1;
\r
811 if (! scsiStatusBSY())
\r
813 *SCSI_CTRL_BSY = 0;
\r
815 // Error, BSY doesn't work.
\r
819 // Should be safe to use the bus now.
\r
823 *SCSI_CTRL_DBX = 0;
\r
825 if ((*SCSI_STS_DBX & 0xff) != 0)
\r
832 for (i = 0; i < 8; ++i)
\r
834 uint8_t data = 1 << i;
\r
835 *SCSI_CTRL_DBX = 0;
\r
837 *SCSI_CTRL_DBX = data;
\r
839 // STS_DBX is 16 bit!
\r
840 if ((*SCSI_STS_DBX & 0xff) != data)
\r
847 *SCSI_CTRL_DBX = 0;
\r
849 // FPGA comms test code
\r
850 for(i = 0; i < 10000; ++i)
\r
852 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
854 scsiDev.data[j] = j;
\r
857 if (!scsiPhyFifoEmpty())
\r
862 *SCSI_CTRL_PHASE = DATA_IN;
\r
865 (uint32_t) &scsiDev.data[0],
\r
866 (uint32_t) SCSI_FIFO_DATA,
\r
867 SCSI_FIFO_DEPTH / 4);
\r
869 HAL_DMA_PollForTransfer(
\r
871 HAL_DMA_FULL_TRANSFER,
\r
874 if (!scsiPhyFifoFull())
\r
879 memset(&scsiDev.data[0], 0, SCSI_FIFO_DEPTH);
\r
881 *SCSI_CTRL_PHASE = DATA_OUT;
\r
884 (uint32_t) SCSI_FIFO_DATA,
\r
885 (uint32_t) &scsiDev.data[0],
\r
886 SCSI_FIFO_DEPTH / 2);
\r
888 HAL_DMA_PollForTransfer(
\r
890 HAL_DMA_FULL_TRANSFER,
\r
893 if (!scsiPhyFifoEmpty())
\r
899 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
901 if (scsiDev.data[j] != (uint8_t) j)
\r
911 *SCSI_CTRL_BSY = 0;
\r