1 // Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
\r
3 // This file is part of SCSI2SD.
\r
5 // SCSI2SD is free software: you can redistribute it and/or modify
\r
6 // it under the terms of the GNU General Public License as published by
\r
7 // the Free Software Foundation, either version 3 of the License, or
\r
8 // (at your option) any later version.
\r
10 // SCSI2SD is distributed in the hope that it will be useful,
\r
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
\r
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
\r
13 // GNU General Public License for more details.
\r
15 // You should have received a copy of the GNU General Public License
\r
16 // along with SCSI2SD. If not, see <http://www.gnu.org/licenses/>.
\r
18 #include "stm32f2xx.h"
\r
19 #include "stm32f2xx_hal.h"
\r
20 #include "stm32f2xx_hal_dma.h"
\r
23 #include "scsiPhy.h"
\r
31 // Assumes a 60MHz fpga clock.
\r
32 // 7:6 Hold count, 45ns
\r
33 // 5:3 Assertion count, 90ns
\r
34 // 2:0 Deskew count, 55ns
\r
35 #define SCSI_DEFAULT_TIMING ((0x3 << 6) | (0x6 << 3) | 0x4)
\r
37 // 7:6 Hold count, 10ns
\r
38 // 5:3 Assertion count, 30ns
\r
39 // 2:0 Deskew count, 25ns
\r
40 #define SCSI_FAST_TIMING ((0x1 << 6) | (0x2 << 3) | 0x2)
\r
42 // Private DMA variables.
\r
43 static int dmaInProgress = 0;
\r
45 static DMA_HandleTypeDef memToFSMC;
\r
46 static DMA_HandleTypeDef fsmcToMem;
\r
49 volatile uint8_t scsiRxDMAComplete;
\r
50 volatile uint8_t scsiTxDMAComplete;
\r
53 CY_ISR_PROTO(scsiRxCompleteISR);
\r
54 CY_ISR(scsiRxCompleteISR)
\r
56 traceIrq(trace_scsiRxCompleteISR);
\r
57 scsiRxDMAComplete = 1;
\r
60 CY_ISR_PROTO(scsiTxCompleteISR);
\r
61 CY_ISR(scsiTxCompleteISR)
\r
63 traceIrq(trace_scsiTxCompleteISR);
\r
64 scsiTxDMAComplete = 1;
\r
68 uint8_t scsiPhyFifoSel = 0; // global
\r
70 // scsi IRQ handler is initialised by the STM32 HAL. Connected to
\r
72 // Note: naming is important to ensure this function is listed in the
\r
74 void EXTI4_IRQHandler()
\r
76 traceIrq(trace_scsiResetISR);
\r
78 // Make sure that interrupt flag is set
\r
79 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_4) != RESET) {
\r
81 // Clear interrupt flag
\r
82 __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_4);
\r
84 scsiDev.resetFlag = scsiDev.resetFlag || scsiStatusRST();
\r
85 // TODO grab SEL status as well
\r
90 static void assertFail()
\r
102 startScsiRx(uint32_t count)
\r
104 *SCSI_DATA_CNT_HI = count >> 8;
\r
105 *SCSI_DATA_CNT_LO = count & 0xff;
\r
106 *SCSI_DATA_CNT_SET = 1;
\r
113 if (!scsiPhyFifoAltEmpty()) {
\r
114 // Force a lock-up.
\r
120 trace(trace_spinPhyRxFifo);
\r
121 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
123 uint8_t val = scsiPhyRx();
\r
124 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
127 if (!scsiPhyFifoEmpty()) {
\r
129 uint8_t k __attribute((unused));
\r
130 while (!scsiPhyFifoEmpty()) { k = scsiPhyRx(); ++j; }
\r
132 // Force a lock-up.
\r
141 scsiReadPIO(uint8_t* data, uint32_t count)
\r
143 for (int i = 0; i < count; ++i)
\r
145 data[i] = scsiPhyRx();
\r
147 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
151 scsiReadDMA(uint8_t* data, uint32_t count)
\r
153 // Prepare DMA transfer
\r
155 trace(trace_doRxSingleDMA);
\r
157 scsiTxDMAComplete = 1; // TODO not used much
\r
158 scsiRxDMAComplete = 0; // TODO not used much
\r
160 HAL_DMA_Start(&fsmcToMem, (uint32_t) SCSI_FIFO_DATA, (uint32_t) data, count);
\r
166 int complete = __HAL_DMA_GET_COUNTER(&fsmcToMem) == 0;
\r
167 complete = complete && (HAL_DMA_PollForTransfer(&fsmcToMem, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
170 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
171 scsiRxDMAComplete = 1;
\r
175 // TODO MM scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
187 scsiRead(uint8_t* data, uint32_t count)
\r
192 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
193 ? SCSI_FIFO_DEPTH : (count - i);
\r
196 // DMA is doing 32bit transfers.
\r
197 chunk = chunk & 0xFFFFFFF8;
\r
199 startScsiRx(chunk);
\r
201 while (i < count && likely(!scsiDev.resetFlag))
\r
203 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
206 uint32_t nextChunk = ((count - i - chunk) > SCSI_FIFO_DEPTH)
\r
207 ? SCSI_FIFO_DEPTH : (count - i - chunk);
\r
208 if (nextChunk >= 16)
\r
210 nextChunk = nextChunk & 0xFFFFFFF8;
\r
214 startScsiRx(nextChunk);
\r
219 scsiReadPIO(data + i, chunk);
\r
223 scsiReadDMA(data + i, chunk);
\r
225 trace(trace_spinReadDMAPoll);
\r
227 while (!scsiReadDMAPoll() && likely(!scsiDev.resetFlag))
\r
237 if (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty()) {
\r
239 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++j; }
\r
242 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++k; }
\r
243 // Force a lock-up.
\r
250 scsiWriteByte(uint8_t value)
\r
253 if (!scsiPhyFifoEmpty()) {
\r
254 // Force a lock-up.
\r
258 trace(trace_spinPhyTxFifo);
\r
262 trace(trace_spinTxComplete);
\r
263 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
266 if (!scsiPhyFifoAltEmpty()) {
\r
267 // Force a lock-up.
\r
274 scsiWritePIO(const uint8_t* data, uint32_t count)
\r
276 for (int i = 0; i < count; ++i)
\r
278 scsiPhyTx(data[i]);
\r
283 scsiWriteDMA(const uint8_t* data, uint32_t count)
\r
285 // Prepare DMA transfer
\r
287 trace(trace_doTxSingleDMA);
\r
289 scsiTxDMAComplete = 0;
\r
290 scsiRxDMAComplete = 1;
\r
295 (uint32_t) SCSI_FIFO_DATA,
\r
302 int complete = __HAL_DMA_GET_COUNTER(&memToFSMC) == 0;
\r
303 complete = complete && (HAL_DMA_PollForTransfer(&memToFSMC, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
306 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
307 scsiRxDMAComplete = 1;
\r
319 scsiWrite(const uint8_t* data, uint32_t count)
\r
322 while (i < count && likely(!scsiDev.resetFlag))
\r
324 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
325 ? SCSI_FIFO_DEPTH : (count - i);
\r
328 if (!scsiPhyFifoEmpty()) {
\r
329 // Force a lock-up.
\r
336 scsiWritePIO(data + i, chunk);
\r
340 // DMA is doing 32bit transfers.
\r
341 chunk = chunk & 0xFFFFFFF8;
\r
342 scsiWriteDMA(data + i, chunk);
\r
344 trace(trace_spinReadDMAPoll);
\r
346 while (!scsiWriteDMAPoll() && likely(!scsiDev.resetFlag))
\r
351 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
356 if (!scsiPhyFifoAltEmpty()) {
\r
357 // Force a lock-up.
\r
365 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
370 if (!scsiPhyFifoAltEmpty()) {
\r
371 // Force a lock-up.
\r
377 static inline void busSettleDelay(void)
\r
379 // Data Release time (switching IO) = 400ns
\r
380 // + Bus Settle time (switching phase) = 400ns.
\r
381 s2s_delay_us(1); // Close enough.
\r
384 void scsiEnterBusFree()
\r
386 *SCSI_CTRL_BSY = 0x00;
\r
387 // We now have a Bus Clear Delay of 800ns to release remaining signals.
\r
388 *SCSI_CTRL_PHASE = 0;
\r
391 void scsiEnterPhase(int phase)
\r
393 // ANSI INCITS 362-2002 SPI-3 10.7.1:
\r
394 // Phase changes are not allowed while REQ or ACK is asserted.
\r
395 while (likely(!scsiDev.resetFlag) && scsiStatusACK()) {}
\r
397 int newPhase = phase > 0 ? phase : 0;
\r
398 int oldPhase = *SCSI_CTRL_PHASE;
\r
400 if (!scsiDev.resetFlag && (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty())) {
\r
401 // Force a lock-up.
\r
404 if (newPhase != oldPhase)
\r
406 if ((newPhase == DATA_IN || newPhase == DATA_OUT) &&
\r
407 scsiDev.target->syncOffset)
\r
409 if (scsiDev.target->syncPeriod == 25)
\r
411 // SCSI2 FAST Timing. 10MB/s.
\r
412 *SCSI_CTRL_TIMING = SCSI_FAST_TIMING;
\r
415 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
417 *SCSI_CTRL_SYNC_OFFSET = scsiDev.target->syncOffset;
\r
419 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
420 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
423 *SCSI_CTRL_PHASE = newPhase;
\r
426 if (scsiDev.compatMode < COMPAT_SCSI2)
\r
434 void scsiPhyReset()
\r
436 trace(trace_scsiPhyReset);
\r
439 trace(trace_spinDMAReset);
\r
440 HAL_DMA_Abort(&memToFSMC);
\r
441 HAL_DMA_Abort(&fsmcToMem);
\r
447 // Set the Clear bits for both SCSI device FIFOs
\r
448 scsiTarget_AUX_CTL = scsiTarget_AUX_CTL | 0x03;
\r
450 // Trigger RST outselves. It is connected to the datapath and will
\r
451 // ensure it returns to the idle state. The datapath runs at the BUS clk
\r
452 // speed (ie. same as the CPU), so we can be sure it is active for a sufficient
\r
454 SCSI_RST_ISR_Disable();
\r
455 SCSI_SetPin(SCSI_Out_RST);
\r
457 SCSI_CTL_PHASE_Write(0);
\r
458 SCSI_ClearPin(SCSI_Out_ATN);
\r
459 SCSI_ClearPin(SCSI_Out_BSY);
\r
460 SCSI_ClearPin(SCSI_Out_ACK);
\r
461 SCSI_ClearPin(SCSI_Out_RST);
\r
462 SCSI_ClearPin(SCSI_Out_SEL);
\r
463 SCSI_ClearPin(SCSI_Out_REQ);
\r
465 // Allow the FIFOs to fill up again.
\r
466 SCSI_ClearPin(SCSI_Out_RST);
\r
467 SCSI_RST_ISR_Enable();
\r
468 scsiTarget_AUX_CTL = scsiTarget_AUX_CTL & ~(0x03);
\r
470 SCSI_Parity_Error_Read(); // clear sticky bits
\r
473 *SCSI_CTRL_PHASE = 0x00;
\r
474 *SCSI_CTRL_BSY = 0x00;
\r
475 s2s_fpgaReset(); // Clears fifos etc.
\r
477 scsiPhyFifoSel = 0;
\r
478 *SCSI_FIFO_SEL = 0;
\r
479 *SCSI_CTRL_DBX = 0;
\r
481 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
482 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
484 // DMA Benchmark code
\r
485 // Currently 10MB/s. Assume 20MB/s is achievable with 16 bits.
\r
486 #ifdef DMA_BENCHMARK
\r
491 for (int i = 0; i < (100LL * 1024 * 1024 / SCSI_FIFO_DEPTH); ++i)
\r
495 (uint32_t) &scsiDev.data[0],
\r
496 (uint32_t) SCSI_FIFO_DATA,
\r
497 SCSI_FIFO_DEPTH / 4);
\r
499 HAL_DMA_PollForTransfer(
\r
501 HAL_DMA_FULL_TRANSFER,
\r
508 for(int i = 0; i < 10; ++i) s2s_delay_ms(1000);
\r
512 // FPGA comms test code
\r
516 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
518 scsiDev.data[j] = j;
\r
521 if (!scsiPhyFifoEmpty())
\r
526 *SCSI_CTRL_PHASE = DATA_IN;
\r
529 (uint32_t) &scsiDev.data[0],
\r
530 (uint32_t) SCSI_FIFO_DATA,
\r
531 SCSI_FIFO_DEPTH / 4);
\r
533 HAL_DMA_PollForTransfer(
\r
535 HAL_DMA_FULL_TRANSFER,
\r
538 if (!scsiPhyFifoFull())
\r
543 memset(&scsiDev.data[0], 0, SCSI_FIFO_DEPTH);
\r
545 *SCSI_CTRL_PHASE = DATA_OUT;
\r
548 (uint32_t) SCSI_FIFO_DATA,
\r
549 (uint32_t) &scsiDev.data[0],
\r
552 HAL_DMA_PollForTransfer(
\r
554 HAL_DMA_FULL_TRANSFER,
\r
557 if (!scsiPhyFifoEmpty())
\r
563 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
565 if (scsiDev.data[j] != (uint8_t) j)
\r
578 static void scsiPhyInitDMA()
\r
580 // One-time init only.
\r
581 static uint8_t init = 0;
\r
586 // Memory to memory transfers can only be done using DMA2
\r
587 __DMA2_CLK_ENABLE();
\r
589 // Transmit SCSI data. The source data is treated as the
\r
590 // peripheral (even though this is memory-to-memory)
\r
591 memToFSMC.Instance = DMA2_Stream0;
\r
592 memToFSMC.Init.Channel = DMA_CHANNEL_0;
\r
593 memToFSMC.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
594 memToFSMC.Init.PeriphInc = DMA_PINC_ENABLE;
\r
595 memToFSMC.Init.MemInc = DMA_MINC_DISABLE;
\r
596 memToFSMC.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
\r
597 memToFSMC.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
\r
598 memToFSMC.Init.Mode = DMA_NORMAL;
\r
599 memToFSMC.Init.Priority = DMA_PRIORITY_LOW;
\r
600 // FIFO mode is needed to allow conversion from 32bit words to the
\r
601 // 8bit FSMC interface.
\r
602 memToFSMC.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
604 // We only use 1 word (4 bytes) in the fifo at a time. Normally it's
\r
605 // better to let the DMA fifo fill up then do burst transfers, but
\r
606 // bursting out the FSMC interface will be very slow and may starve
\r
607 // other (faster) transfers. We don't want to risk the SDIO transfers
\r
608 // from overrun/underrun conditions.
\r
609 memToFSMC.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
610 memToFSMC.Init.MemBurst = DMA_MBURST_SINGLE;
\r
611 memToFSMC.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
612 HAL_DMA_Init(&memToFSMC);
\r
614 // Receive SCSI data. The source data (fsmc) is treated as the
\r
615 // peripheral (even though this is memory-to-memory)
\r
616 fsmcToMem.Instance = DMA2_Stream1;
\r
617 fsmcToMem.Init.Channel = DMA_CHANNEL_0;
\r
618 fsmcToMem.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
619 fsmcToMem.Init.PeriphInc = DMA_PINC_DISABLE;
\r
620 fsmcToMem.Init.MemInc = DMA_MINC_ENABLE;
\r
621 fsmcToMem.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
\r
622 fsmcToMem.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
\r
623 fsmcToMem.Init.Mode = DMA_NORMAL;
\r
624 fsmcToMem.Init.Priority = DMA_PRIORITY_LOW;
\r
625 fsmcToMem.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
626 fsmcToMem.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
627 fsmcToMem.Init.MemBurst = DMA_MBURST_SINGLE;
\r
628 fsmcToMem.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
629 HAL_DMA_Init(&fsmcToMem);
\r
631 // TODO configure IRQs
\r
640 *SCSI_CTRL_IDMASK = 0x00; // Reset in scsiPhyConfig
\r
641 *SCSI_CTRL_PHASE = 0x00;
\r
642 *SCSI_CTRL_BSY = 0x00;
\r
643 scsiPhyFifoSel = 0;
\r
644 *SCSI_FIFO_SEL = 0;
\r
645 *SCSI_CTRL_DBX = 0;
\r
647 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
648 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
652 void scsiPhyConfig()
\r
654 if (scsiDev.boardCfg.flags6 & S2S_CFG_ENABLE_TERMINATOR)
\r
656 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_RESET);
\r
660 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_SET);
\r
664 uint8_t idMask = 0;
\r
665 for (int i = 0; i < 8; ++i)
\r
667 const S2S_TargetCfg* cfg = s2s_getConfigById(i);
\r
668 if (cfg && (cfg->scsiId & S2S_CFG_TARGET_ENABLED))
\r
670 idMask |= (1 << i);
\r
673 *SCSI_CTRL_IDMASK = idMask;
\r
678 // 2 = Parity error
\r
682 // 32 = other error
\r
685 if (scsiDev.phase != BUS_FREE)
\r
690 // Acquire the SCSI bus.
\r
691 for (int i = 0; i < 100; ++i)
\r
693 if (scsiStatusBSY())
\r
698 if (scsiStatusBSY())
\r
700 // Error, couldn't acquire scsi bus
\r
703 *SCSI_CTRL_BSY = 1;
\r
704 if (! scsiStatusBSY())
\r
706 // Error, BSY doesn't work.
\r
710 // Should be safe to use the bus now.
\r
717 for (i = 0; i < 256; ++i)
\r
719 *SCSI_CTRL_DBX = i;
\r
721 if (*SCSI_STS_DBX != (i & 0xff))
\r
725 /*if (Lookup_OddParity[i & 0xff] != SCSI_ReadPin(SCSI_In_DBP))
\r
730 *SCSI_CTRL_DBX = 0;
\r
732 // TEST MSG, CD, IO
\r
734 for (i = 0; i < 8; ++i)
\r
736 SCSI_CTL_PHASE_Write(i);
\r
739 if (SCSI_ReadPin(SCSI_In_MSG) != !!(i & __scsiphase_msg))
\r
743 if (SCSI_ReadPin(SCSI_In_CD) != !!(i & __scsiphase_cd))
\r
747 if (SCSI_ReadPin(SCSI_In_IO) != !!(i & __scsiphase_io))
\r
752 SCSI_CTL_PHASE_Write(0);
\r
754 uint32_t signalsOut[] = { SCSI_Out_ATN, SCSI_Out_BSY, SCSI_Out_RST, SCSI_Out_SEL };
\r
755 uint32_t signalsIn[] = { SCSI_Filt_ATN, SCSI_Filt_BSY, SCSI_Filt_RST, SCSI_Filt_SEL };
\r
757 for (i = 0; i < 4; ++i)
\r
759 SCSI_SetPin(signalsOut[i]);
\r
763 for (j = 0; j < 4; ++j)
\r
767 if (! SCSI_ReadFilt(signalsIn[j]))
\r
774 if (SCSI_ReadFilt(signalsIn[j]))
\r
780 SCSI_ClearPin(signalsOut[i]);
\r
784 *SCSI_CTRL_BSY = 0;
\r