1 // Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
\r
3 // This file is part of SCSI2SD.
\r
5 // SCSI2SD is free software: you can redistribute it and/or modify
\r
6 // it under the terms of the GNU General Public License as published by
\r
7 // the Free Software Foundation, either version 3 of the License, or
\r
8 // (at your option) any later version.
\r
10 // SCSI2SD is distributed in the hope that it will be useful,
\r
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
\r
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
\r
13 // GNU General Public License for more details.
\r
15 // You should have received a copy of the GNU General Public License
\r
16 // along with SCSI2SD. If not, see <http://www.gnu.org/licenses/>.
\r
18 #include "stm32f2xx.h"
\r
19 #include "stm32f2xx_hal.h"
\r
20 #include "stm32f2xx_hal_dma.h"
\r
23 #include "scsiPhy.h"
\r
31 // Time until we consider ourselves selected
\r
33 #define SCSI_DEFAULT_SELECTION 43
\r
34 #define SCSI_FAST_SELECTION 5
\r
37 // Assumes a 108MHz fpga clock.
\r
38 // 2:0 Deskew count, 55ns
\r
39 // 6:4 Hold count, 53ns
\r
40 // 3:0 Assertion count, 80ns
\r
41 #define SCSI_DEFAULT_DESKEW 0x6
\r
42 #define SCSI_DEFAULT_TIMING ((0x6 << 4) | 0x9)
\r
44 // 3.125MB/s (80 period) to < 10MB/s sync
\r
45 // Assumes a 108MHz fpga clock. (9 ns)
\r
46 // (((period * 4) / 2) * 0.8) / 9
\r
47 // Done using 3 fixed point math.
\r
48 // 2:0 Deskew count, 55ns normal, or 25ns if faster than 5.5MB/s
\r
49 // 6:4 Hold count, 53ns normal, or 33ns if faster than 5.5MB/s
\r
50 // 3:0 Assertion count, variable
\r
51 #define SCSI_SYNC_DESKEW(period) (period < 45 ? SCSI_FAST10_DESKEW : SCSI_DEFAULT_DESKEW)
\r
52 #define SCSI_SYNC_TIMING(period) (((period < 45 ? 0x4 : 0x6) << 4) | ((((((int)period) * 177) + 750)/1000) & 0xF))
\r
55 // 2:0 Deskew count, 25ns
\r
56 // 6:4 Hold count, 33ns
\r
57 // 3:0 Assertion count, 30ns
\r
58 // We want deskew + hold + assert + 3 to add up to 11 clocks
\r
59 // the fpga code has 1 clock of overhead when transitioning from deskew to
\r
61 #define SCSI_FAST10_DESKEW 2
\r
62 #define SCSI_FAST10_TIMING ((0x3 << 4) | 0x3)
\r
65 // 2:0 Deskew count, 12ns
\r
66 // 6:4 Hold count, 17ns
\r
67 // 3:0 Assertion count, 15ns
\r
68 #define SCSI_FAST20_DESKEW 1
\r
69 #define SCSI_FAST20_TIMING ((0x2 << 4) | 0x2)
\r
71 // Private DMA variables.
\r
72 static int dmaInProgress = 0;
\r
74 static DMA_HandleTypeDef memToFSMC;
\r
75 static DMA_HandleTypeDef fsmcToMem;
\r
78 volatile uint8_t scsiRxDMAComplete;
\r
79 volatile uint8_t scsiTxDMAComplete;
\r
81 uint8_t scsiPhyFifoSel = 0; // global
\r
83 // scsi IRQ handler is initialised by the STM32 HAL. Connected to
\r
85 // Note: naming is important to ensure this function is listed in the
\r
87 void EXTI4_IRQHandler()
\r
89 traceIrq(trace_scsiResetISR);
\r
91 // Make sure that interrupt flag is set
\r
92 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_4) != RESET) {
\r
94 // Clear interrupt flag
\r
95 __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_4);
\r
97 scsiDev.resetFlag = scsiDev.resetFlag || scsiStatusRST();
\r
99 // selFlag is required for Philips P2000C which releases it after 600ns
\r
100 // without waiting for BSY.
\r
101 // Also required for some early Mac Plus roms
\r
102 scsiDev.selFlag = *SCSI_STS_SELECTED;
\r
105 __SEV(); // Set event. See corresponding __WFE() calls.
\r
108 static void assertFail()
\r
120 scsiSetDataCount(uint32_t count)
\r
122 *SCSI_DATA_CNT_HI = count >> 8;
\r
123 *SCSI_DATA_CNT_LO = count & 0xff;
\r
124 *SCSI_DATA_CNT_SET = 1;
\r
131 if (!scsiPhyFifoAltEmpty()) {
\r
132 // Force a lock-up.
\r
136 scsiSetDataCount(1);
\r
138 trace(trace_spinPhyRxFifo);
\r
139 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
141 __WFE(); // Wait for event
\r
144 uint8_t val = scsiPhyRx();
\r
145 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
148 if (!scsiPhyFifoEmpty()) {
\r
150 uint8_t k __attribute((unused));
\r
151 while (!scsiPhyFifoEmpty()) { k = scsiPhyRx(); ++j; }
\r
153 // Force a lock-up.
\r
162 scsiReadPIO(uint8_t* data, uint32_t count)
\r
164 uint16_t* fifoData = (uint16_t*)data;
\r
166 for (int i = 0; i < (count + 1) / 2; ++i)
\r
168 fifoData[i] = scsiPhyRx(); // TODO ASSUMES LITTLE ENDIAN
\r
173 scsiReadDMA(uint8_t* data, uint32_t count)
\r
175 // Prepare DMA transfer
\r
177 trace(trace_doRxSingleDMA);
\r
179 scsiTxDMAComplete = 1; // TODO not used much
\r
180 scsiRxDMAComplete = 0; // TODO not used much
\r
184 (uint32_t) SCSI_FIFO_DATA,
\r
192 int complete = __HAL_DMA_GET_COUNTER(&fsmcToMem) == 0;
\r
193 complete = complete && (HAL_DMA_PollForTransfer(&fsmcToMem, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
196 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
197 scsiRxDMAComplete = 1;
\r
201 // TODO MM scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
213 scsiRead(uint8_t* data, uint32_t count, int* parityError)
\r
219 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
220 ? SCSI_FIFO_DEPTH : (count - i);
\r
221 #ifdef SCSI_FSMC_DMA
\r
224 // DMA is doing 32bit transfers.
\r
225 chunk = chunk & 0xFFFFFFF8;
\r
228 scsiSetDataCount(chunk);
\r
230 while (i < count && likely(!scsiDev.resetFlag))
\r
232 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
234 __WFE(); // Wait for event
\r
236 *parityError |= scsiParityError();
\r
239 uint32_t nextChunk = ((count - i - chunk) > SCSI_FIFO_DEPTH)
\r
240 ? SCSI_FIFO_DEPTH : (count - i - chunk);
\r
241 #ifdef SCSI_FSMC_DMA
\r
242 if (nextChunk >= 16)
\r
244 nextChunk = nextChunk & 0xFFFFFFF8;
\r
249 scsiSetDataCount(nextChunk);
\r
252 #ifdef SCSI_FSMC_DMA
\r
256 scsiReadPIO(data + i, chunk);
\r
258 #ifdef SCSI_FSMC_DMA
\r
261 scsiReadDMA(data + i, chunk);
\r
263 trace(trace_spinReadDMAPoll);
\r
265 while (!scsiReadDMAPoll() && likely(!scsiDev.resetFlag))
\r
276 if (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty()) {
\r
278 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++j; }
\r
281 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++k; }
\r
282 // Force a lock-up.
\r
289 scsiWriteByte(uint8_t value)
\r
292 if (!scsiPhyFifoEmpty()) {
\r
293 // Force a lock-up.
\r
297 trace(trace_spinPhyTxFifo);
\r
301 scsiSetDataCount(1);
\r
303 trace(trace_spinTxComplete);
\r
304 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
306 __WFE(); // Wait for event
\r
310 if (!scsiPhyFifoAltEmpty()) {
\r
311 // Force a lock-up.
\r
318 scsiWritePIO(const uint8_t* data, uint32_t count)
\r
320 uint16_t* fifoData = (uint16_t*)data;
\r
321 for (int i = 0; i < (count + 1) / 2; ++i)
\r
323 scsiPhyTx(fifoData[i]);
\r
328 scsiWriteDMA(const uint8_t* data, uint32_t count)
\r
330 // Prepare DMA transfer
\r
332 trace(trace_doTxSingleDMA);
\r
334 scsiTxDMAComplete = 0;
\r
335 scsiRxDMAComplete = 1;
\r
340 (uint32_t) SCSI_FIFO_DATA,
\r
347 int complete = __HAL_DMA_GET_COUNTER(&memToFSMC) == 0;
\r
348 complete = complete && (HAL_DMA_PollForTransfer(&memToFSMC, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
351 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
352 scsiRxDMAComplete = 1;
\r
364 scsiWrite(const uint8_t* data, uint32_t count)
\r
367 while (i < count && likely(!scsiDev.resetFlag))
\r
369 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
370 ? SCSI_FIFO_DEPTH : (count - i);
\r
373 if (!scsiPhyFifoEmpty()) {
\r
374 // Force a lock-up.
\r
379 #ifdef SCSI_FSMC_DMA
\r
383 scsiWritePIO(data + i, chunk);
\r
385 #ifdef SCSI_FSMC_DMA
\r
388 // DMA is doing 32bit transfers.
\r
389 chunk = chunk & 0xFFFFFFF8;
\r
390 scsiWriteDMA(data + i, chunk);
\r
392 trace(trace_spinReadDMAPoll);
\r
394 while (!scsiWriteDMAPoll() && likely(!scsiDev.resetFlag))
\r
400 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
402 __WFE(); // Wait for event
\r
406 if (!scsiPhyFifoAltEmpty()) {
\r
407 // Force a lock-up.
\r
413 scsiSetDataCount(chunk);
\r
416 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
418 __WFE(); // Wait for event
\r
422 if (!scsiPhyFifoAltEmpty()) {
\r
423 // Force a lock-up.
\r
429 static inline void busSettleDelay(void)
\r
431 // Data Release time (switching IO) = 400ns
\r
432 // + Bus Settle time (switching phase) = 400ns.
\r
433 s2s_delay_us(1); // Close enough.
\r
436 void scsiEnterBusFree()
\r
438 *SCSI_CTRL_BSY = 0x00;
\r
439 // We now have a Bus Clear Delay of 800ns to release remaining signals.
\r
440 *SCSI_CTRL_PHASE = 0;
\r
443 void scsiEnterPhase(int phase)
\r
445 // ANSI INCITS 362-2002 SPI-3 10.7.1:
\r
446 // Phase changes are not allowed while REQ or ACK is asserted.
\r
447 while (likely(!scsiDev.resetFlag) && scsiStatusACK()) {}
\r
449 int newPhase = phase > 0 ? phase : 0;
\r
450 int oldPhase = *SCSI_CTRL_PHASE;
\r
452 if (!scsiDev.resetFlag && (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty())) {
\r
453 // Force a lock-up.
\r
456 if (newPhase != oldPhase)
\r
458 if ((newPhase == DATA_IN || newPhase == DATA_OUT) &&
\r
459 scsiDev.target->syncOffset)
\r
461 if (scsiDev.target->syncPeriod == 12)
\r
463 // SCSI2 FAST-20 Timing. 20MB/s.
\r
464 *SCSI_CTRL_DESKEW = SCSI_FAST20_DESKEW;
\r
465 *SCSI_CTRL_TIMING = SCSI_FAST20_TIMING;
\r
467 else if (scsiDev.target->syncPeriod == 25)
\r
469 // SCSI2 FAST Timing. 10MB/s.
\r
470 *SCSI_CTRL_DESKEW = SCSI_FAST10_DESKEW;
\r
471 *SCSI_CTRL_TIMING = SCSI_FAST10_TIMING;
\r
475 *SCSI_CTRL_DESKEW = SCSI_SYNC_DESKEW(scsiDev.target->syncPeriod);
\r
476 *SCSI_CTRL_TIMING = SCSI_SYNC_TIMING(scsiDev.target->syncPeriod);
\r
479 *SCSI_CTRL_SYNC_OFFSET = scsiDev.target->syncOffset;
\r
481 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
484 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
485 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
488 *SCSI_CTRL_PHASE = newPhase;
\r
491 if (scsiDev.compatMode < COMPAT_SCSI2)
\r
499 void scsiPhyReset()
\r
501 trace(trace_scsiPhyReset);
\r
504 trace(trace_spinDMAReset);
\r
505 HAL_DMA_Abort(&memToFSMC);
\r
506 HAL_DMA_Abort(&fsmcToMem);
\r
511 *SCSI_CTRL_PHASE = 0x00;
\r
512 *SCSI_CTRL_BSY = 0x00;
\r
513 s2s_fpgaReset(); // Clears fifos etc.
\r
515 scsiPhyFifoSel = 0;
\r
516 *SCSI_FIFO_SEL = 0;
\r
517 *SCSI_CTRL_DBX = 0;
\r
519 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
520 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
521 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
523 // DMA Benchmark code
\r
524 // Currently 11MB/s.
\r
525 #ifdef DMA_BENCHMARK
\r
530 for (int i = 0; i < (100LL * 1024 * 1024 / SCSI_FIFO_DEPTH); ++i)
\r
534 (uint32_t) &scsiDev.data[0],
\r
535 (uint32_t) SCSI_FIFO_DATA,
\r
536 SCSI_FIFO_DEPTH / 4);
\r
538 HAL_DMA_PollForTransfer(
\r
540 HAL_DMA_FULL_TRANSFER,
\r
547 for(int i = 0; i < 10; ++i) s2s_delay_ms(1000);
\r
551 // FPGA comms test code
\r
555 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
557 scsiDev.data[j] = j;
\r
560 if (!scsiPhyFifoEmpty())
\r
565 *SCSI_CTRL_PHASE = DATA_IN;
\r
568 (uint32_t) &scsiDev.data[0],
\r
569 (uint32_t) SCSI_FIFO_DATA,
\r
570 SCSI_FIFO_DEPTH / 4);
\r
572 HAL_DMA_PollForTransfer(
\r
574 HAL_DMA_FULL_TRANSFER,
\r
577 if (!scsiPhyFifoFull())
\r
582 memset(&scsiDev.data[0], 0, SCSI_FIFO_DEPTH);
\r
584 *SCSI_CTRL_PHASE = DATA_OUT;
\r
587 (uint32_t) SCSI_FIFO_DATA,
\r
588 (uint32_t) &scsiDev.data[0],
\r
589 SCSI_FIFO_DEPTH / 2);
\r
591 HAL_DMA_PollForTransfer(
\r
593 HAL_DMA_FULL_TRANSFER,
\r
596 if (!scsiPhyFifoEmpty())
\r
602 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
604 if (scsiDev.data[j] != (uint8_t) j)
\r
615 #ifdef SCSI_FREQ_TEST
\r
618 *SCSI_CTRL_DBX = 0xAA;
\r
619 *SCSI_CTRL_DBX = 0x55;
\r
625 static void scsiPhyInitDMA()
\r
627 // One-time init only.
\r
628 static uint8_t init = 0;
\r
633 // Memory to memory transfers can only be done using DMA2
\r
634 __DMA2_CLK_ENABLE();
\r
636 // Transmit SCSI data. The source data is treated as the
\r
637 // peripheral (even though this is memory-to-memory)
\r
638 memToFSMC.Instance = DMA2_Stream0;
\r
639 memToFSMC.Init.Channel = DMA_CHANNEL_0;
\r
640 memToFSMC.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
641 memToFSMC.Init.PeriphInc = DMA_PINC_ENABLE;
\r
642 memToFSMC.Init.MemInc = DMA_MINC_DISABLE;
\r
643 memToFSMC.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
\r
644 memToFSMC.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
\r
645 memToFSMC.Init.Mode = DMA_NORMAL;
\r
646 memToFSMC.Init.Priority = DMA_PRIORITY_LOW;
\r
647 // FIFO mode is needed to allow conversion from 32bit words to the
\r
648 // 16bit FSMC interface.
\r
649 memToFSMC.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
651 // We only use 1 word (4 bytes) in the fifo at a time. Normally it's
\r
652 // better to let the DMA fifo fill up then do burst transfers, but
\r
653 // bursting out the FSMC interface will be very slow and may starve
\r
654 // other (faster) transfers. We don't want to risk the SDIO transfers
\r
655 // from overrun/underrun conditions.
\r
656 memToFSMC.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
657 memToFSMC.Init.MemBurst = DMA_MBURST_SINGLE;
\r
658 memToFSMC.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
659 HAL_DMA_Init(&memToFSMC);
\r
661 // Receive SCSI data. The source data (fsmc) is treated as the
\r
662 // peripheral (even though this is memory-to-memory)
\r
663 fsmcToMem.Instance = DMA2_Stream1;
\r
664 fsmcToMem.Init.Channel = DMA_CHANNEL_0;
\r
665 fsmcToMem.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
666 fsmcToMem.Init.PeriphInc = DMA_PINC_DISABLE;
\r
667 fsmcToMem.Init.MemInc = DMA_MINC_ENABLE;
\r
668 fsmcToMem.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
\r
669 fsmcToMem.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
\r
670 fsmcToMem.Init.Mode = DMA_NORMAL;
\r
671 fsmcToMem.Init.Priority = DMA_PRIORITY_LOW;
\r
672 fsmcToMem.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
673 fsmcToMem.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
674 fsmcToMem.Init.MemBurst = DMA_MBURST_SINGLE;
\r
675 fsmcToMem.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
676 HAL_DMA_Init(&fsmcToMem);
\r
678 // TODO configure IRQs
\r
687 *SCSI_CTRL_IDMASK = 0x00; // Reset in scsiPhyConfig
\r
688 *SCSI_CTRL_PHASE = 0x00;
\r
689 *SCSI_CTRL_BSY = 0x00;
\r
690 scsiPhyFifoSel = 0;
\r
691 *SCSI_FIFO_SEL = 0;
\r
692 *SCSI_CTRL_DBX = 0;
\r
694 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
695 *SCSI_CTRL_DESKEW = SCSI_DEFAULT_DESKEW;
\r
696 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
698 *SCSI_CTRL_SEL_TIMING = SCSI_DEFAULT_SELECTION;
\r
702 void scsiPhyConfig()
\r
704 if (scsiDev.boardCfg.flags6 & S2S_CFG_ENABLE_TERMINATOR)
\r
706 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_RESET);
\r
710 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_SET);
\r
714 uint8_t idMask = 0;
\r
715 for (int i = 0; i < 8; ++i)
\r
717 const S2S_TargetCfg* cfg = s2s_getConfigById(i);
\r
718 if (cfg && (cfg->scsiId & S2S_CFG_TARGET_ENABLED))
\r
720 idMask |= (1 << i);
\r
723 *SCSI_CTRL_IDMASK = idMask;
\r
726 ((scsiDev.boardCfg.flags & S2S_CFG_DISABLE_GLITCH) ?
\r
727 SCSI_CTRL_FLAGS_DISABLE_GLITCH : 0) |
\r
728 ((scsiDev.boardCfg.flags & S2S_CFG_ENABLE_PARITY) ?
\r
729 SCSI_CTRL_FLAGS_ENABLE_PARITY : 0);
\r
731 *SCSI_CTRL_SEL_TIMING =
\r
732 (scsiDev.boardCfg.flags & S2S_CFG_ENABLE_SEL_LATCH) ?
\r
733 SCSI_FAST_SELECTION : SCSI_DEFAULT_SELECTION;
\r
738 // 2 = Parity error
\r
742 // 32 = other error
\r
745 if (scsiDev.phase != BUS_FREE)
\r
750 // Acquire the SCSI bus.
\r
751 for (int i = 0; i < 100; ++i)
\r
753 if (scsiStatusBSY())
\r
758 if (scsiStatusBSY())
\r
760 // Error, couldn't acquire scsi bus
\r
763 *SCSI_CTRL_BSY = 1;
\r
764 if (! scsiStatusBSY())
\r
766 // Error, BSY doesn't work.
\r
770 // Should be safe to use the bus now.
\r
777 for (i = 0; i < 256; ++i)
\r
779 *SCSI_CTRL_DBX = i;
\r
781 if (*SCSI_STS_DBX != (i & 0xff))
\r
785 /*if (Lookup_OddParity[i & 0xff] != SCSI_ReadPin(SCSI_In_DBP))
\r
790 *SCSI_CTRL_DBX = 0;
\r
792 // TEST MSG, CD, IO
\r
794 for (i = 0; i < 8; ++i)
\r
796 SCSI_CTL_PHASE_Write(i);
\r
799 if (SCSI_ReadPin(SCSI_In_MSG) != !!(i & __scsiphase_msg))
\r
803 if (SCSI_ReadPin(SCSI_In_CD) != !!(i & __scsiphase_cd))
\r
807 if (SCSI_ReadPin(SCSI_In_IO) != !!(i & __scsiphase_io))
\r
812 SCSI_CTL_PHASE_Write(0);
\r
814 uint32_t signalsOut[] = { SCSI_Out_ATN, SCSI_Out_BSY, SCSI_Out_RST, SCSI_Out_SEL };
\r
815 uint32_t signalsIn[] = { SCSI_Filt_ATN, SCSI_Filt_BSY, SCSI_Filt_RST, SCSI_Filt_SEL };
\r
817 for (i = 0; i < 4; ++i)
\r
819 SCSI_SetPin(signalsOut[i]);
\r
823 for (j = 0; j < 4; ++j)
\r
827 if (! SCSI_ReadFilt(signalsIn[j]))
\r
834 if (SCSI_ReadFilt(signalsIn[j]))
\r
840 SCSI_ClearPin(signalsOut[i]);
\r
844 *SCSI_CTRL_BSY = 0;
\r