1 // Copyright (C) 2013 Michael McMaster <michael@codesrc.com>
\r
3 // This file is part of SCSI2SD.
\r
5 // SCSI2SD is free software: you can redistribute it and/or modify
\r
6 // it under the terms of the GNU General Public License as published by
\r
7 // the Free Software Foundation, either version 3 of the License, or
\r
8 // (at your option) any later version.
\r
10 // SCSI2SD is distributed in the hope that it will be useful,
\r
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
\r
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
\r
13 // GNU General Public License for more details.
\r
15 // You should have received a copy of the GNU General Public License
\r
16 // along with SCSI2SD. If not, see <http://www.gnu.org/licenses/>.
\r
18 #include "stm32f2xx.h"
\r
19 #include "stm32f2xx_hal.h"
\r
20 #include "stm32f2xx_hal_dma.h"
\r
23 #include "scsiPhy.h"
\r
32 // Assumes a 96MHz fpga clock.
\r
33 // 2:0 Deskew count, 55ns
\r
34 // 6:4 Hold count, 53ns
\r
35 // 3:0 Assertion count, 80ns
\r
36 #define SCSI_DEFAULT_DESKEW 0x6
\r
37 #define SCSI_DEFAULT_TIMING ((0x5 << 4) | 0x8)
\r
40 // 2:0 Deskew count, 25ns
\r
41 // 6:4 Hold count, 33ns
\r
42 // 3:0 Assertion count, 30ns
\r
43 #define SCSI_FAST10_DESKEW 3
\r
44 #define SCSI_FAST10_TIMING ((0x3 << 4) | 0x3)
\r
47 // 2:0 Deskew count, 12ns
\r
48 // 6:4 Hold count, 17ns
\r
49 // 3:0 Assertion count, 15ns
\r
50 #define SCSI_FAST20_DESKEW 2
\r
51 #define SCSI_FAST20_TIMING ((0x2 << 4) | 0x2)
\r
53 // Private DMA variables.
\r
54 static int dmaInProgress = 0;
\r
56 static DMA_HandleTypeDef memToFSMC;
\r
57 static DMA_HandleTypeDef fsmcToMem;
\r
60 volatile uint8_t scsiRxDMAComplete;
\r
61 volatile uint8_t scsiTxDMAComplete;
\r
64 CY_ISR_PROTO(scsiRxCompleteISR);
\r
65 CY_ISR(scsiRxCompleteISR)
\r
67 traceIrq(trace_scsiRxCompleteISR);
\r
68 scsiRxDMAComplete = 1;
\r
71 CY_ISR_PROTO(scsiTxCompleteISR);
\r
72 CY_ISR(scsiTxCompleteISR)
\r
74 traceIrq(trace_scsiTxCompleteISR);
\r
75 scsiTxDMAComplete = 1;
\r
79 uint8_t scsiPhyFifoSel = 0; // global
\r
81 // scsi IRQ handler is initialised by the STM32 HAL. Connected to
\r
83 // Note: naming is important to ensure this function is listed in the
\r
85 void EXTI4_IRQHandler()
\r
87 traceIrq(trace_scsiResetISR);
\r
89 // Make sure that interrupt flag is set
\r
90 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_4) != RESET) {
\r
92 // Clear interrupt flag
\r
93 __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_4);
\r
95 scsiDev.resetFlag = scsiDev.resetFlag || scsiStatusRST();
\r
96 // TODO grab SEL status as well
\r
101 static void assertFail()
\r
113 startScsiRx(uint32_t count)
\r
115 *SCSI_DATA_CNT_HI = count >> 8;
\r
116 *SCSI_DATA_CNT_LO = count & 0xff;
\r
117 *SCSI_DATA_CNT_SET = 1;
\r
124 if (!scsiPhyFifoAltEmpty()) {
\r
125 // Force a lock-up.
\r
131 trace(trace_spinPhyRxFifo);
\r
132 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
134 uint8_t val = scsiPhyRx();
\r
135 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
138 if (!scsiPhyFifoEmpty()) {
\r
140 uint8_t k __attribute((unused));
\r
141 while (!scsiPhyFifoEmpty()) { k = scsiPhyRx(); ++j; }
\r
143 // Force a lock-up.
\r
152 scsiReadPIO(uint8_t* data, uint32_t count)
\r
154 for (int i = 0; i < count; ++i)
\r
156 data[i] = scsiPhyRx();
\r
158 // TODO scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
162 scsiReadDMA(uint8_t* data, uint32_t count)
\r
164 // Prepare DMA transfer
\r
166 trace(trace_doRxSingleDMA);
\r
168 scsiTxDMAComplete = 1; // TODO not used much
\r
169 scsiRxDMAComplete = 0; // TODO not used much
\r
171 HAL_DMA_Start(&fsmcToMem, (uint32_t) SCSI_FIFO_DATA, (uint32_t) data, count);
\r
177 int complete = __HAL_DMA_GET_COUNTER(&fsmcToMem) == 0;
\r
178 complete = complete && (HAL_DMA_PollForTransfer(&fsmcToMem, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
181 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
182 scsiRxDMAComplete = 1;
\r
186 // TODO MM scsiDev.parityError = scsiDev.parityError || SCSI_Parity_Error_Read();
\r
198 scsiRead(uint8_t* data, uint32_t count)
\r
203 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
204 ? SCSI_FIFO_DEPTH : (count - i);
\r
205 #ifdef SCSI_FSMC_DMA
\r
208 // DMA is doing 32bit transfers.
\r
209 chunk = chunk & 0xFFFFFFF8;
\r
212 startScsiRx(chunk);
\r
214 while (i < count && likely(!scsiDev.resetFlag))
\r
216 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
219 uint32_t nextChunk = ((count - i - chunk) > SCSI_FIFO_DEPTH)
\r
220 ? SCSI_FIFO_DEPTH : (count - i - chunk);
\r
221 #ifdef SCSI_FSMC_DMA
\r
222 if (nextChunk >= 16)
\r
224 nextChunk = nextChunk & 0xFFFFFFF8;
\r
229 startScsiRx(nextChunk);
\r
232 #ifdef SCSI_FSMC_DMA
\r
236 scsiReadPIO(data + i, chunk);
\r
238 #ifdef SCSI_FSMC_DMA
\r
241 scsiReadDMA(data + i, chunk);
\r
243 trace(trace_spinReadDMAPoll);
\r
245 while (!scsiReadDMAPoll() && likely(!scsiDev.resetFlag))
\r
256 if (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty()) {
\r
258 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++j; }
\r
261 while (!scsiPhyFifoEmpty()) { scsiPhyRx(); ++k; }
\r
262 // Force a lock-up.
\r
269 scsiWriteByte(uint8_t value)
\r
272 if (!scsiPhyFifoEmpty()) {
\r
273 // Force a lock-up.
\r
277 trace(trace_spinPhyTxFifo);
\r
281 trace(trace_spinTxComplete);
\r
282 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag)) {}
\r
285 if (!scsiPhyFifoAltEmpty()) {
\r
286 // Force a lock-up.
\r
293 scsiWritePIO(const uint8_t* data, uint32_t count)
\r
295 for (int i = 0; i < count; ++i)
\r
297 scsiPhyTx(data[i]);
\r
302 scsiWriteDMA(const uint8_t* data, uint32_t count)
\r
304 // Prepare DMA transfer
\r
306 trace(trace_doTxSingleDMA);
\r
308 scsiTxDMAComplete = 0;
\r
309 scsiRxDMAComplete = 1;
\r
314 (uint32_t) SCSI_FIFO_DATA,
\r
321 int complete = __HAL_DMA_GET_COUNTER(&memToFSMC) == 0;
\r
322 complete = complete && (HAL_DMA_PollForTransfer(&memToFSMC, HAL_DMA_FULL_TRANSFER, 0xffffffff) == HAL_OK);
\r
325 scsiTxDMAComplete = 1; // TODO MM FIX IRQ
\r
326 scsiRxDMAComplete = 1;
\r
338 scsiWrite(const uint8_t* data, uint32_t count)
\r
341 while (i < count && likely(!scsiDev.resetFlag))
\r
343 uint32_t chunk = ((count - i) > SCSI_FIFO_DEPTH)
\r
344 ? SCSI_FIFO_DEPTH : (count - i);
\r
347 if (!scsiPhyFifoEmpty()) {
\r
348 // Force a lock-up.
\r
353 #ifdef SCSI_FSMC_DMA
\r
357 scsiWritePIO(data + i, chunk);
\r
359 #ifdef SCSI_FSMC_DMA
\r
362 // DMA is doing 32bit transfers.
\r
363 chunk = chunk & 0xFFFFFFF8;
\r
364 scsiWriteDMA(data + i, chunk);
\r
366 trace(trace_spinReadDMAPoll);
\r
368 while (!scsiWriteDMAPoll() && likely(!scsiDev.resetFlag))
\r
374 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
379 if (!scsiPhyFifoAltEmpty()) {
\r
380 // Force a lock-up.
\r
388 while (!scsiPhyComplete() && likely(!scsiDev.resetFlag))
\r
393 if (!scsiPhyFifoAltEmpty()) {
\r
394 // Force a lock-up.
\r
400 static inline void busSettleDelay(void)
\r
402 // Data Release time (switching IO) = 400ns
\r
403 // + Bus Settle time (switching phase) = 400ns.
\r
404 s2s_delay_us(1); // Close enough.
\r
407 void scsiEnterBusFree()
\r
409 *SCSI_CTRL_BSY = 0x00;
\r
410 // We now have a Bus Clear Delay of 800ns to release remaining signals.
\r
411 *SCSI_CTRL_PHASE = 0;
\r
414 void scsiEnterPhase(int phase)
\r
416 // ANSI INCITS 362-2002 SPI-3 10.7.1:
\r
417 // Phase changes are not allowed while REQ or ACK is asserted.
\r
418 while (likely(!scsiDev.resetFlag) && scsiStatusACK()) {}
\r
420 int newPhase = phase > 0 ? phase : 0;
\r
421 int oldPhase = *SCSI_CTRL_PHASE;
\r
423 if (!scsiDev.resetFlag && (!scsiPhyFifoEmpty() || !scsiPhyFifoAltEmpty())) {
\r
424 // Force a lock-up.
\r
427 if (newPhase != oldPhase)
\r
429 if ((newPhase == DATA_IN || newPhase == DATA_OUT) &&
\r
430 scsiDev.target->syncOffset)
\r
432 if (scsiDev.target->syncPeriod == 12)
\r
434 // SCSI2 FAST-20 Timing. 20MB/s.
\r
435 *SCSI_CTRL_TIMING = SCSI_FAST20_DESKEW;
\r
436 *SCSI_CTRL_TIMING2 = SCSI_FAST20_TIMING;
\r
438 else if (scsiDev.target->syncPeriod == 25)
\r
440 // SCSI2 FAST Timing. 10MB/s.
\r
441 *SCSI_CTRL_TIMING = SCSI_FAST10_DESKEW;
\r
442 *SCSI_CTRL_TIMING2 = SCSI_FAST10_TIMING;
\r
445 *SCSI_CTRL_TIMING = SCSI_DEFAULT_DESKEW;
\r
446 *SCSI_CTRL_TIMING2 = SCSI_DEFAULT_TIMING;
\r
448 *SCSI_CTRL_SYNC_OFFSET = scsiDev.target->syncOffset;
\r
450 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
451 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
454 *SCSI_CTRL_PHASE = newPhase;
\r
457 if (scsiDev.compatMode < COMPAT_SCSI2)
\r
465 void scsiPhyReset()
\r
467 trace(trace_scsiPhyReset);
\r
470 trace(trace_spinDMAReset);
\r
471 HAL_DMA_Abort(&memToFSMC);
\r
472 HAL_DMA_Abort(&fsmcToMem);
\r
477 *SCSI_CTRL_PHASE = 0x00;
\r
478 *SCSI_CTRL_BSY = 0x00;
\r
479 s2s_fpgaReset(); // Clears fifos etc.
\r
481 scsiPhyFifoSel = 0;
\r
482 *SCSI_FIFO_SEL = 0;
\r
483 *SCSI_CTRL_DBX = 0;
\r
485 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
486 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
488 // DMA Benchmark code
\r
489 // Currently 6.6MB/s. Assume 13MB/s is achievable with 16 bits
\r
490 #ifdef DMA_BENCHMARK
\r
495 for (int i = 0; i < (100LL * 1024 * 1024 / SCSI_FIFO_DEPTH); ++i)
\r
499 (uint32_t) &scsiDev.data[0],
\r
500 (uint32_t) SCSI_FIFO_DATA,
\r
501 SCSI_FIFO_DEPTH / 4);
\r
503 HAL_DMA_PollForTransfer(
\r
505 HAL_DMA_FULL_TRANSFER,
\r
512 for(int i = 0; i < 10; ++i) s2s_delay_ms(1000);
\r
516 // FPGA comms test code
\r
520 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
522 scsiDev.data[j] = j;
\r
525 if (!scsiPhyFifoEmpty())
\r
530 *SCSI_CTRL_PHASE = DATA_IN;
\r
533 (uint32_t) &scsiDev.data[0],
\r
534 (uint32_t) SCSI_FIFO_DATA,
\r
535 SCSI_FIFO_DEPTH / 4);
\r
537 HAL_DMA_PollForTransfer(
\r
539 HAL_DMA_FULL_TRANSFER,
\r
542 if (!scsiPhyFifoFull())
\r
547 memset(&scsiDev.data[0], 0, SCSI_FIFO_DEPTH);
\r
549 *SCSI_CTRL_PHASE = DATA_OUT;
\r
552 (uint32_t) SCSI_FIFO_DATA,
\r
553 (uint32_t) &scsiDev.data[0],
\r
556 HAL_DMA_PollForTransfer(
\r
558 HAL_DMA_FULL_TRANSFER,
\r
561 if (!scsiPhyFifoEmpty())
\r
567 for (int j = 0; j < SCSI_FIFO_DEPTH; ++j)
\r
569 if (scsiDev.data[j] != (uint8_t) j)
\r
582 static void scsiPhyInitDMA()
\r
584 // One-time init only.
\r
585 static uint8_t init = 0;
\r
590 // Memory to memory transfers can only be done using DMA2
\r
591 __DMA2_CLK_ENABLE();
\r
593 // Transmit SCSI data. The source data is treated as the
\r
594 // peripheral (even though this is memory-to-memory)
\r
595 memToFSMC.Instance = DMA2_Stream0;
\r
596 memToFSMC.Init.Channel = DMA_CHANNEL_0;
\r
597 memToFSMC.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
598 memToFSMC.Init.PeriphInc = DMA_PINC_ENABLE;
\r
599 memToFSMC.Init.MemInc = DMA_MINC_DISABLE;
\r
600 memToFSMC.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
\r
601 memToFSMC.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
\r
602 memToFSMC.Init.Mode = DMA_NORMAL;
\r
603 memToFSMC.Init.Priority = DMA_PRIORITY_LOW;
\r
604 // FIFO mode is needed to allow conversion from 32bit words to the
\r
605 // 8bit FSMC interface.
\r
606 memToFSMC.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
608 // We only use 1 word (4 bytes) in the fifo at a time. Normally it's
\r
609 // better to let the DMA fifo fill up then do burst transfers, but
\r
610 // bursting out the FSMC interface will be very slow and may starve
\r
611 // other (faster) transfers. We don't want to risk the SDIO transfers
\r
612 // from overrun/underrun conditions.
\r
613 memToFSMC.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
614 memToFSMC.Init.MemBurst = DMA_MBURST_SINGLE;
\r
615 memToFSMC.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
616 HAL_DMA_Init(&memToFSMC);
\r
618 // Receive SCSI data. The source data (fsmc) is treated as the
\r
619 // peripheral (even though this is memory-to-memory)
\r
620 fsmcToMem.Instance = DMA2_Stream1;
\r
621 fsmcToMem.Init.Channel = DMA_CHANNEL_0;
\r
622 fsmcToMem.Init.Direction = DMA_MEMORY_TO_MEMORY;
\r
623 fsmcToMem.Init.PeriphInc = DMA_PINC_DISABLE;
\r
624 fsmcToMem.Init.MemInc = DMA_MINC_ENABLE;
\r
625 fsmcToMem.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
\r
626 fsmcToMem.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
\r
627 fsmcToMem.Init.Mode = DMA_NORMAL;
\r
628 fsmcToMem.Init.Priority = DMA_PRIORITY_LOW;
\r
629 fsmcToMem.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
\r
630 fsmcToMem.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
\r
631 fsmcToMem.Init.MemBurst = DMA_MBURST_SINGLE;
\r
632 fsmcToMem.Init.PeriphBurst = DMA_PBURST_SINGLE;
\r
633 HAL_DMA_Init(&fsmcToMem);
\r
635 // TODO configure IRQs
\r
644 *SCSI_CTRL_IDMASK = 0x00; // Reset in scsiPhyConfig
\r
645 *SCSI_CTRL_PHASE = 0x00;
\r
646 *SCSI_CTRL_BSY = 0x00;
\r
647 scsiPhyFifoSel = 0;
\r
648 *SCSI_FIFO_SEL = 0;
\r
649 *SCSI_CTRL_DBX = 0;
\r
651 *SCSI_CTRL_SYNC_OFFSET = 0;
\r
652 *SCSI_CTRL_TIMING = SCSI_DEFAULT_TIMING;
\r
656 void scsiPhyConfig()
\r
658 if (scsiDev.boardCfg.flags6 & S2S_CFG_ENABLE_TERMINATOR)
\r
660 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_RESET);
\r
664 HAL_GPIO_WritePin(nTERM_EN_GPIO_Port, nTERM_EN_Pin, GPIO_PIN_SET);
\r
668 uint8_t idMask = 0;
\r
669 for (int i = 0; i < 8; ++i)
\r
671 const S2S_TargetCfg* cfg = s2s_getConfigById(i);
\r
672 if (cfg && (cfg->scsiId & S2S_CFG_TARGET_ENABLED))
\r
674 idMask |= (1 << i);
\r
677 *SCSI_CTRL_IDMASK = idMask;
\r
682 // 2 = Parity error
\r
686 // 32 = other error
\r
689 if (scsiDev.phase != BUS_FREE)
\r
694 // Acquire the SCSI bus.
\r
695 for (int i = 0; i < 100; ++i)
\r
697 if (scsiStatusBSY())
\r
702 if (scsiStatusBSY())
\r
704 // Error, couldn't acquire scsi bus
\r
707 *SCSI_CTRL_BSY = 1;
\r
708 if (! scsiStatusBSY())
\r
710 // Error, BSY doesn't work.
\r
714 // Should be safe to use the bus now.
\r
721 for (i = 0; i < 256; ++i)
\r
723 *SCSI_CTRL_DBX = i;
\r
725 if (*SCSI_STS_DBX != (i & 0xff))
\r
729 /*if (Lookup_OddParity[i & 0xff] != SCSI_ReadPin(SCSI_In_DBP))
\r
734 *SCSI_CTRL_DBX = 0;
\r
736 // TEST MSG, CD, IO
\r
738 for (i = 0; i < 8; ++i)
\r
740 SCSI_CTL_PHASE_Write(i);
\r
743 if (SCSI_ReadPin(SCSI_In_MSG) != !!(i & __scsiphase_msg))
\r
747 if (SCSI_ReadPin(SCSI_In_CD) != !!(i & __scsiphase_cd))
\r
751 if (SCSI_ReadPin(SCSI_In_IO) != !!(i & __scsiphase_io))
\r
756 SCSI_CTL_PHASE_Write(0);
\r
758 uint32_t signalsOut[] = { SCSI_Out_ATN, SCSI_Out_BSY, SCSI_Out_RST, SCSI_Out_SEL };
\r
759 uint32_t signalsIn[] = { SCSI_Filt_ATN, SCSI_Filt_BSY, SCSI_Filt_RST, SCSI_Filt_SEL };
\r
761 for (i = 0; i < 4; ++i)
\r
763 SCSI_SetPin(signalsOut[i]);
\r
767 for (j = 0; j < 4; ++j)
\r
771 if (! SCSI_ReadFilt(signalsIn[j]))
\r
778 if (SCSI_ReadFilt(signalsIn[j]))
\r
784 SCSI_ClearPin(signalsOut[i]);
\r
788 *SCSI_CTRL_BSY = 0;
\r